12.714 Computational Data Analysis

Alan Chave (alan@whoi.edu)
Thomas Herring (tah@mit.edu),
http://geoweb.mit.edu/~tah/12.714

Today’ s class

+ Asymptotic distribution of lag window estimators
+ Examples of lag window estimators

— Bartlett

—Daniell

—Parzen

—Papoulis
+ Welch’ s overlapping segment averaging (woca)
+ Example using Matlab pwelch routine
+ Multi-taper methods
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Asymptotic distribution of lag window

estimators

* The lag window estimator
&(0w) Ja () L Sw (7@ p_ 7
ST = Wy (f =S (d)de = W (RS = 1-))
~fvy 2NAY jo(N-1)
* (summation is exact when f=f,=k/(2NAt)
» The direct estimates are chi-squared distributed with 2
degrees of freedom, and so S(lw) is the sum of the
these 2 distributed random variables. What is its
distribution? .
» Approximation: |§")(f)=ay?
« Distributed with o times a v degrees of freedom %2
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S(w) distribution
» To determine the values of o and v, we have
E{8™(f)}= E{ay;}=av
var{S™) ()} = var{ay 2} = 2a’v.
2(ELS) g ()
N A0 R L)
var{8"(f)} v

* For large numbers of samples, we can relate these
expectations to known quantities and we have

] 2NA? i} 2N S
U e Wiy GV W
h)Zfony ' P)de h2t=—(N-)Wt.m
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S(w) distribution

+ The quantity v is called the equivalent degrees of

freedom. It can also be related to the bandwidth of
the smoothing window and allows us to calculate the
variance of the spectral estimates.

_ 2NBWAI {S(lw)(f)} 2S (f)
h

+ As v increases the variance decreases (but possibly at

the expense of bias).

« If the bandwidth is increased too much, the mse can

increase because of increased bias.
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Confidence intervals

« If Q,(p) is the p*100% percentage point for %2, then we

05,

can compute confidence intervals. We have

PIO,(p)= X2 <0,(1-p)]=1-2p

B (f)
<— VY < 1- =
PIO,(p)= = 2 =0,(-p)]
S gy ),
< =1-2
Poa-m =% 0.0 g

The 100(1-2p)% confidence interval for S(f) is
V8 () W™

Qv(l - p) , Qv(p)
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Examples of lag windows

+ We show examples for four lag windows. For each
window, the lag window versus lag for specific m and
N=64, the smoothing window W_,(.), and the spectral
windows for a rectangular taper and dpss NW4 taper.

* The lag windows shown are

Bartlett We  =1=|tl/m |t<m
Daniell o = sin(e/m) T|<N
’ at/m
1-6(z/m)* +6(7|/m)* |t]=m/2
Parzen rm = 3
2(1-t/m) m/2<|t|sm

Papoulis w._ , = l sin(rt/m)|+ (1-|t|/m)cos(wr/m) |t/ <m
T,m T

Bartlett window m=30, N=64
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Daniell window m=20, N=64
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Parzen window m=37, N=64
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Papoulius window m=34, N=64

12 20‘
1+
0s o
06 @ -20¢
3z 04 :i l I A
02| 2 <0 ‘ |
o e, | l L ]
02 l { ‘ | I |
04 -80
0 10 20 30 40 S0 50 0 0.1 02 03 04 05
' frequency
20‘ 20
- 0t . 5 0t
o — :
3 o —_— - % =20t
E 3 S~
‘E -40t fé -40 \\\\ﬁ
> S0+ ;i 50+
ABDU 01 02 03 04 05 %0 0.1 02 03 04 05
frequency frequency
Characteristics of lag windows
Estimator Asymptotic v B,
variance
Bartlett 0.67m 3N 1.5/(mAt)
Daniell m 3 2R 1/(mAt)
Parzen 0.54m<S 371 R 1.85/(mAt)
Papoulis 0.59m S 3.41 %R 1.70/(mAt)
=0, S*(f)IN R=NImC,)
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Welch’ s Overlapped Segment
Averaging

+ In lag-window spectrum we smooth the direct estimate spectrum
or the autocovariance sequence. In the Welch method, data is
broken down into segments of a given length, the spectrum for
each block is computed and an average taken of these spectrum.

* In the lag-window approach we loose resolution by smoothing
over frequencies; In the Welch approach we lose resolution
because the data spans are shorter.

+ Two main ideas:

— Using tapers to reduce leakage and

— overlapping the blocks for improved variance properties.
Overlapping helps because is partly compensates for the
down weighting of data at ends of blocks (e.g., Hanning and
dpss NW4 type tapers).
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WOSA

+ Method now know as WOSA (Welch/Weighted Overlapped
Segment Averaging).
+ The WOSA estimate is given by

2
A Ng o
Sl(d)(f) =Atl Y, h,XHl_le_’z”ﬁAt l<sl/<sN+1-Ng
1=1
S(wosa) 1 NB_I"(d)
ST =y Eo Sinn1 ()

N is total data; N is block size and N is number of blocks
n is a shift factor such that 0 <n < Ngand n(Ngz —1)=N - Ny

* h, is the data taper being used.
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Statistics of S(wosa)

+ The expectation is given by

a(d) T &(wosa)
E{S5, (DY =" JH(f = fHS(fdf'=EXS ()}
—fwv)
* Note the expectation depends only on the block size
and not on the total number of data (it also depends
on the data taper and the true spectrum).

+ The expectation does not depend on the number of
blocks or the shift factor.

+ When using WOSA it is important that the block size
be large enough to capture the features in S(f).
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Variance of S(wosa)

+ The variance of the WOSA estimate is given by

Np-1
var{8Co0( )3 = LTS Va5 (134 Seovis @ ()59 (1)
NB i n+ 123j<k jn n

var{S's) | (f)} = $*(f) and

2

Ng
VIS DS =S Shibri
t=

Ng
2 hthl+mn

B m=1 B/|t=1

2 Np-1
var{8§"( f)} -—5N(f)[1+2 S (1_’”)

|
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Effective degrees of freedom

» Based on the variance estimates we can determine
the effective degrees of freedom.

+ Figure on next page shows results for a Hanning
window given below.

EC N,
Covar8YO(Yy [ Ng1f o \Ns 2
I+2 I-— htht+mn
* m2=l ( B) tgl

Hanning Window

ool [
h, = 1-cos
3(Ny+1) Ng+1

05,

=

Effective dof for Hanning data taper
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Effective dof for dpss NW=4 taper

Effective degrees of freedom for COSA for sample size 1024 dpss NW«

N =64 - S
N =128
N =256

Effective degrees of freedom

Use of WOSA

« The WOSA spectral estimator is widely used because:
—In can be implemented with fixed length FFTs.
—Long sequences of data can be handled.

— Commercial spectrum analyzers have this method
built in.

— A robust sdf estimator can be devised such that
individual S(d) are combined weighted so that
blocks with outliers are down weighted (Chave et al,
1987)

* Biggest problem can be bias from too small a block
size.
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Example WOSA

AR(4) generated with pweich: 8 segements with 50% overfap. Hanning Tap
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Multi-taper Methods

+ The multi-taper methods were developed by Thompson
[1982] and address the issue of information lost in the
WOSA approach.

— Multi-taper methods with orthogonal tapers can be used
in a reasonably automatic fashion without the design
needed for pre-whitening or leakage with WOSA
approaches. (Can be used in instrumentation).

— Bias can be separated into two quantifiable components:
local due to band pass and broad-band leakage

— Considered to generate spectral estimates with more
than 2-degrees of freedom.

+ Method and example discussed in PW Chapter 7.
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Example

+ Following figures and matlab code for lecture show
the use of orthogonal DPSS functions as multitapers

* Results from each taper are shown and then the
average of the sequences of tapers.

+ The noise characteristics of the average to kth order is
chi-squared with 2k degrees of freedom divided by 2k
(PW p 374 and section 7.1)

+ As discussed in PW chapter 7 it is possible to
generate an adaptive estimate of the spectral density
by weighting the average.
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DPSS k =1

DPSS k = 1 Sample 1024

005+

DPSS function

-005-
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DPSS k=7

DPSS k = 7 Sample 1024
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Averaging the multi-taper results
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Averaging more (and bias)
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Summary of today’ s class

+ Asymptotic distribution of lag window estimators: Allows
variance, effective degrees of freedom, and confidence
intervals to be computed (valid for large samples)

+ Examples of lag window estimators, Bartlett, Daniell,
Parzen and Papoulis. Each has its own properties (with
Bartlett being closest to wosa)

+ Welch’ s overlapping segment averaging (wosa): Divide
data in blocks and then average direct spectra from blocks.

+ Example using Matlab pwelch routine
+ Exampe of multi-taper applications of Slepian functions

+ Remember: High dynamic range needs to be carefully
considered when spectral density functions are computed.
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