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Today’s class!
•  Non-parametric Spectral Estimation!

– Bias reduction: Pre-whitening!
– Statistical Properties of direct spectral estimates!
– Smoothing of direct spectral estimates!
– First moment properties of lag window estimators!
– Second moment properties of lag window 

estimators!



2	



05/14/2012! 12.714 Sec 2 L09! 3!

Bias reduction: Pre-whitening!
•  We already have seen bias reduction through the use 

of tapers!
•  The idea of a pre-whitening filter is to pre-filter the 

time series to reduce the dynamic range.  This is done 
with a pre-whitening filter , gu!
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Bias reduction: Pre-whitening!
•  Ideally the spectral density function of Yt is flat and hence the 

idea of pre-whitening.!
•  There are problems and tradeoffs:!

– Since the filter has a finite length, the pre-whitening time 
series has less data (and lower spectral resolution).!

–  “Chicken and Egg” problem: How do you know filter to use 
before knowing the sdf? Experience and physics can help!

– Estimation of the filter from the data themselves.  Discussed in 
Chapter 9 of PW where an AR(n) process is fit to the data to 
obtain the pre-whitening filter (still involves assumptions of 
order to use).!
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Statistics of Direct Spectral 
Estimation!

•  Consider the spectral estimates of white, Gaussian 
noise, Gt, with variance σ2, using taper ht.!

€ 

J( f ) = A( f ) + iB( f ) = (Δt)1/2 htGt
t=1

N
∑ e−i2πft

var{A( f ) |B( f }} =σ 2Δt ht cos
2(2πftΔt) | sin2(2πftΔt);

t=1

N
∑

cov{A( f ),A( f ')} =σ 2Δt ht cos(2πftΔt)cos(2πf ' tΔt);
t=1

N
∑

cov{A( f ),B( f ')} =σ 2Δt ht cos(2πftΔt)sin(2πf ' tΔt);
t=1

N
∑
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Statistics: Gaussian White noise!
•  If we take a rectangular taper and consider the Fourier 

frequencies (k/(NΔt)) then!

•  Since A2(f)+B2(f)=S(f), it follows (d over = means distributed)!

€ 

var{A( fk )} =
σ 2Δt /2 for fk ≠ 0 or f(N)

σ 2Δt    for fk = 0 or f(N)
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var{B( fk )} =
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0          for fk = 0 or f(N)
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All covariances at the Fourier frequencies are zero
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2 ˆ S G
( p )( fk )=

dσ 2Δt
2

χ2
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Statistics: Gaussian White Noise!
•  For the case of f=0 or the Nyquist rate:!

•  So Gaussian white noise, the sdf estimates are Chi-
squared distributed with 2 degrees of freedom.!

•  Remembering                                            we can write 
expressions for the variance of our estimates!

€ 

ˆ S G
( p )( fk )=

d
σ 2Δtχ2

2 for fk = 0, f(N )

For Gaussian white noise :  σ 2Δt = SG ( f ) and ∴
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E{χν
2} = ν and var{χν

2} = 2ν
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Expectation and Variance!
•  Using the chi-squared expectation and variance we 

have!

•  Samples at the Fourier frequencies are independent.!
•  The same relationships hold for stationary processes 

(with some restrictions on the finiteness of higher 
order moments) as the number of samples used to 
compute the spectra tends to infinity.!

€ 

E{ ˆ S G
( p )( fk )} =σ 2Δt = SG ( f ) for all fk

var{ ˆ S G
( p )( fk )} =

σ 4Δt2 = SG
2 ( f ) for fk ≠ 0, f(N )

2σ 4Δt2 = 2SG
2 ( f )   for fk = 0, f(N )
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Statistics Direct Spectral Estimates!
•  The variance properties hold for direct spectral estimates 

provided the form of {ht} is reasonable again as N tends to 
infinity.!

•  However, the grid on which the estimates are uncorrelated is 
often modified: As we saw the central peak is widened to 
suppress the side lobes and so the un-correlated estimates occur 
at the nulls in the central peak.!

•  Since the variances of the estimates, in all cases, do not depend 
on N, these estimators are not consistent estimators of S(f).!

•  Because the variance is proportional to S(f), on dB plot, the noise 
should appear the same at all frequencies (not so on a linear 
plot).  Smoothness of the dB plot implies leakage leading to 
smooth estimated.!
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White noise periodogram estimates!
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Example!
•  To show effect on resolution; the next set of figures 

show the spectral density functions computed for the 
AR(4)!
– Standard Periodogram!
– Hanning Taper!
– DPSS with NW=4 !

•  For the latter two, note the change in resolution!
•  For all cases: Specific look will depend on random 

sequence (try the lecture case with 102 as seed the 
randn).!
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Spectral “effective” resolution!
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Statistical properties!
•  Since the sdf estimates are chi-squared distributed with 2-

degrees of freedom, the asymmetry in this distribution leads to 
interesting visual effect. !

•  The PDF for chi-squared in linear and log space is given by!

•  On a linear plot, the “upshots” appear more frequent while on a 
dB (log) scale the “down shots” appear more prominent. !

€ 

fu (u) =
e−u /2 /2 for u ≥ 0
0            for u < 0

$ 
% 
& 

fv (v) =
log(10)

20
10v /10e−(10v /10 ) /2 for v =10log(u)
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Chi-squared 2-degrees of freedom!
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Smoothing direct estimates!
•  The periodogram and direct spectral estimates have problems 

because of large variability and possibly weaken statistical tests 
because of high noise levels (bias can also be a problem). !

•  The traditional approach is to smooth the estimates of S(f). If N is 
large enough then we can generate an average:!

•  As N and M increase (keeping fk the same), the variance  
decreases so this is a consistent estimator,!
€ 

S ( fk ) ≡ 1
2M +1

ˆ S ( p )( fk− j )
j=−M

M
∑

var{S ( fk )} ≈ S2( fk ) /(2M +1)
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Smoothing direct estimates!
•  Rather than just taking an average of the spectral 

estimates we can use smoothing sequence !

•  Where N’ is chosen to control the frequency spacing. 
Normally N’ is greater than or equal the sample size!

•  This estimate is called the discretely smoothed direct 
spectral estimator.  !

•  The coefficients {gj} are a LTI digital filter.!

€ 

S (ds)( fk
' ) ≡ g j ˆ S (d )( fk− j

' )  with fk
' ≡

j=−M

M
∑

k
N 'Δt
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Lag Window estimator!
•  The previous case was discrete smoothing but we can 

define the spectrum continuously in frequency and 
use a continuous convolution!

€ 

ˆ S (lw )( f ) = Vm ( f −φ) ˆ S (d )(φ)dφ
− f(N )

f(N )
∫

ˆ S (lw )( f ) = Vm ( f −φ) Δt ˆ s τ
(d )e−i2πφτΔt

τ =−(N−1)

N−1
∑

) 

* 
+ 

, 

- 
. dφ

− f(N )

f(N )
∫

ˆ S (lw )( f ) = Δt vτ ,m ˆ s τ
(d )e−i2πφτΔt

τ =−(N−1)

N−1
∑ vτ ,m = Vm (φ)ei2πφτΔtdφ

− f(N )

f(N )
∫
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Lag Window Estimator!
•  To be precise, the window is written as!

•  Wm(.) is called a smoothing window (some authors 
use spectral window) and {wτ,m} is called a lag window 
(other names include quadratic window, quadratic 
taper)!

•  S(lw)(f) is called a lag window spectral estimator.!
•  The directly smoothed spectral estimator can be 

expressed as a lag window estimator.!

€ 

wτ ,m =
vτ ,m ,  τ < N
0,    τ ≥ N

$ 
% 
& 

Wm ( f ) ≡ Δt wτ ,me
−i2πfτ

t=−(N−1)

N−1
∑
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Lag Window Conditions!
•  For a lag window to be have smaller variance than the 

direct estimator we require!
– Wm(.) should be an even 2f(N) periodic function!
– The integral of Wm(.) over the Nyquist range should 

be 1 (or equivalently w0,m=1)!
– For any ε>0 and for |f|> ε, Wm(f)→0 and m →∞!
– Wm(f)≥0 for all m and f (desirable to ensure the lag 

window sdf is always positive but not sufficient or 
necessary).!
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Bandwidth of LW estimator!
•  If Wm(f) is always positive we can define!

•  This form can have computational problems because 
of alternating signs.!

•  Another definition that matches the earlier definition of 
the autocorrelation width is!

€ 

βW ≡ 12 f 2Wm ( f )df
− f(N )

f(N )
∫

& 

' 
( ( 

) 

* 
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€ 

Bw ≡
1

Wm
2( f )df

− f(N )

f(N )
∫

=
1

Δt wτ ,m
2

τ =−(N−1)

N−1
∑
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First moment properties of LW 
estimators!

•  Since the lag window estimators are effectively a convolution with 
a convolution we have!

•  Um(.) is called the spectral window (by PW)!
•  The bias between the S(lw)f and S(f) will depend on two things: 

The curvature of S(f) (depends on the second derivative) and on 
the bandwidth of the smoothing window (too wide a bandwidth 
will smear peaks).!

€ 

E{ ˆ S (lw )( f )} = Um ( f −φ)S(φ)dφ
− f(N )

f(N )
∫

Um ( f ) ≡ Wm ( f − f ')Η( f ')df '
− f(N )

f(N )
∫
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Second Moment Properties!
•  With some assumptions we have!

•  Assumptions:!
– Pair-wise uncorrelated estimates at fk!
– Large sample variance for S(d)!
– Smoothness assumptions!
– Wm is approximately zero for frequencies greater 

than specified value!
– A summation can be replaced with a Riemann 

integral!

€ 

var{ ˆ S (lw )( fk
' )} ≈ S2( fk

' )
N 'Δt

Wm
2

− f(N )

f(N )
∫ (φ)dφ
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Second Moment Properties!
•  The spacing between uncorrelated estimates in the direct 

spectrum estimate can be quantified with N’=N/Ch. Details on 
computing Ch are given p 250-253 PW.!

•  Results of different tapers!
– Data Taper   !Ch!
– Rectangle ! !1.00!
–  20% cosine !1.12!
–  50% cosine !1.35!
–  100% cosine !1.94!
– NW 1 dpss! !1.34!
– NW 2 dpss! !1.96!
– NW 3 dpss! !2.80!
– NW 4 dpss! !3.94!
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Summary of today’ class!
•  Non-parametric Spectral Estimation!

– Bias reduction: Pre-whitening!
– Statistical Properties of direct spectral estimates: Allows to 

assess the variance of the spectral estimates!
– Smoothing of direct spectral estimates: Two methods direct 

smoothing and lag-window estimates!
– First moment properties of lag window estimators: Bias in 

estimates (especially leakage)!
– Second moment properties of lag window estimators: 

Variance of estimates and the effects of bandwidth and the 
effective number of samples available.!


