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Today’ s class

* Non-parametric Spectral Estimation
— Bias reduction: Pre-whitening
— Statistical Properties of direct spectral estimates
— Smoothing of direct spectral estimates
— First moment properties of lag window estimators

—Second moment properties of lag window
estimators
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Bias reduction: Pre-whitening

+ We already have seen bias reduction through the use
of tapers

+ The idea of a pre-whitening filter is to pre-filter the
time series to reduce the dynamic range. This is done
with a pre-whitening filter , g,
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Bias reduction: Pre-whitening

+ ldeally the spectral density function of Y, is flat and hence the
idea of pre-whitening.
+ There are problems and tradeoffs:
— Since the filter has a finite length, the pre-whitening time
series has less data (and lower spectral resolution).
— “Chicken and Egg” problem: How do you know filter to use
before knowing the sdf? Experience and physics can help

— Estimation of the filter from the data themselves. Discussed in
Chapter 9 of PW where an AR(n) process is fit to the data to
obtain the pre-whitening filter (still involves assumptions of
order to use).
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Statistics of Direct Spectral

Estimation

+ Consider the spectral estimates of white, Gaussian
noise, G, with variance o2, using taper h,.

J() = ACH)+B(F) = ()2 S G2

t=1

var{A(f) | B(f}} = 0*At §ht cos>(2aftAr) Isin® 2afiAr);

t=1

cov{A(f),A(f")}= oAt g h, cos(2naftAt)cos(2nf ' tAt);

t=1

cov{A(f),B(f")} = oAt g h, cos(2naftAt)sin(2nf ' tAt);
1=1
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Statistics: Gaussian White noise

+ If we take a rectangular taper and consider the Fourier
frequencies (k/(NAt)) then

oAt /2 for f =0 or fyy,
o’At  for fy =0 or f(y,

var{A(f;)} = {

oAt /2 for fi =0 or £y

var{B =
(B {o for fi =0 or fy,

All covariances at the Fourier frequencies are zero
+ Since A2(f)+B2(f)=S(f), it follows (d over = means distributed)

2 ~ d A dO'ZAt
8P (fo=x5 S (o=
O At
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Statistics: Gaussian White Noise

» For the case of f=0 or the Nyquist rate:

P e A2
SGP (fk)=o AtXZ fOI‘fk =O’f(N)

For Gaussian white noise : o’Af = Sc(f) and ..

n d
Sg’)<fk)={

Sc(F)xz 12 for fr =0, fv)
S(;(f)X% for f; = O,f(N)

+ So Gaussian white noise, the sdf estimates are Chi-
squared distributed with 2 degrees of freedom.

* Remembering \E{x%} = v and var{xﬁ} = ZV\ we can write
expressions for the variance of our estimates
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Expectation and Variance

+ Using the chi-squared expectation and variance we

have

EQSY(f)} = 0%At = S5 (f) for all f,

o*A? = SE(f) for f =0, fy
o*Ar* =2SE(f) forf, =0,fw)

var{S (f} = {2

« Samples at the Fourier frequencies are independent.

+ The same relationships hold for stationary processes
(with some restrictions on the finiteness of higher
order moments) as the number of samples used to
compute the spectra tends to infinity.
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Statistics Direct Spectral Estimates

The variance properties hold for direct spectral estimates
provided the form of {h;} is reasonable again as N tends to
infinity.

However, the grid on which the estimates are uncorrelated is
often modified: As we saw the central peak is widened to
suppress the side lobes and so the un-correlated estimates occur
at the nulls in the central peak.

Since the variances of the estimates, in all cases, do not depend
on N, these estimators are not consistent estimators of S(f).

Because the variance is proportional to S(f), on dB plot, the noise
should appear the same at all frequencies (not so on a linear
plot). Smoothness of the dB plot implies leakage leading to
smooth estimated.
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Example

+ To show effect on resolution; the next set of figures
show the spectral density functions computed for the
AR(4)

— Standard Periodogram
—Hanning Taper
—DPSS with NW=4
* For the latter two, note the change in resolution

+ For all cases: Specific look will depend on random
sequence (try the lecture case with 102 as seed the
randn).
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Statistical properties

+ Since the sdf estimates are chi-squared distributed with 2-
degrees of freedom, the asymmetry in this distribution leads to
interesting visual effect.

+ The PDF for chi-squared in linear and log space is given by

£ ()= e 212 foru=0
! 0 foru<O

v/10
frv) = k)i(éo)lowloe_(lo 2 forv = 10log(u)

+ On a linear plot, the “upshots” appear more frequent while on a
dB (log) scale the “down shots” appear more prominent.
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Smoothing direct estimates

+ The periodogram and direct spectral estimates have problems
because of large variability and possibly weaken statistical tests
because of high noise levels (bias can also be a problem).

+ The traditional approach is to smooth the estimates of S(f). If N is
large enough then we can generate an average:

1

< Lo
SUD= 3141 3570

var{S(f,)} = S2(f,)/2M +1)

+ As N and M increase (keeping fk the same), the variance
decreases so this is a consistent estimator,
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Smoothing direct estimates

+ Rather than just taking an average of the spectral
estimates we can use smoothing sequence

— ! M A 1 ! k
S (f)= S@(f,_ ) withf, =
(f1) jzgj (fi=j) fx N Az
- Where N’ is chosen to control the frequency spacing.
Normally N’ is greater than or equal the sample size

+ This estimate is called the discretely smoothed direct
spectral estimator.

* The coefficients {g;} are a LTI digital filter.
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Lag Window estimator

* The previous case was discrete smoothing but we can
define the spectrum continuously in frequency and
use a continuous convolution

N favy N
S™ Y= [V, (f -9)SD(¢)dg

—f(v)

i S
Sy =T Vot -9 A Nzlﬁé%"“q’m’)dqb

-fvy T=—(N-1)
SM(f) = At 2 v g Demizaptar f(}V)V (9™ dgy
T,m T T,m
T=—(N-1) -f(v)
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Lag Window Estimator

» To be precise, the window is written as

,|TI<N N-1 _
Wr,m ={ - ‘ Wm(f)EAt E wrm L2afc
0, [t]=N t=—(N-1)

+ W, (.) is called a smoothing window (some authors
use spectral window) and {w_ ..} is called a lag window
(other names include quadratic window, quadratic
taper)

« SW)(f) is called a lag window spectral estimator.

* The directly smoothed spectral estimator can be
expressed as a lag window estimator.
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Lag Window Conditions

+ For a lag window to be have smaller variance than the
direct estimator we require

—W,,(-) should be an even 2f, periodic function

—The integral of W,(.) over the Nyquist range should
be 1 (or equivalently w, ,=1)

—For any £>0 and for Ifl> ¢, W,,(f)—=0 and m —o

—W,,.(f)=0 for all m and f (desirable to ensure the lag
window sdf is always positive but not sufficient or
necessary).
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Bandwidth of LW estimator

« If W, (f) is always positive we can define

Jav) o 12 N1 (=1)T v
ﬁWE[12 i szm(f)df] =((At)2(1+2 =D w,,—,m))

_f(N) T =1 T

+ This form can have computational problems because
of alternating signs.

« Another definition that matches the earlier definition of
the autocorrelation width is

1 1

BW = =
f(N) N-1
[ WEpdr A3 we,
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First moment properties of LW
estimators

+ Since the lag window estimators are effectively a convolution with
a convolution we have

() Jwvy
E{S" (k= JU,(f -9)S(¢9)do
=fivy

fav)
Un(f)= [W,(f-fHHdf
—fwv)
+ U,,(.) is called the spectral window (by PW)
+ The bias between the S™f and S(f) will depend on two things:
The curvature of S(f) (depends on the second derivative) and on
the bandwidth of the smoothing window (too wide a bandwidth
will smear peaks).
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Second Moment Properties

+ With some assumptions we have

sy, oy ST T o

SM(for ="K [ W (g)d
var{ (fi)} N'As I Wa(9)d¢
» Assumptions:

=)
—Pair-wise uncorrelated estimates at f,
—Large sample variance for S(@
— Smoothness assumptions
—Wm is approximately zero for frequencies greater
than specified value

— A summation can be replaced with a Riemann
integral
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Second Moment Properties

+ The spacing between uncorrelated estimates in the direct
spectrum estimate can be quantified with N’ =N/C,,. Details on
computing Ch are given p 250-253 PW.

+ Results of different tapers

— Data Taper C,

— Rectangle 1.00
— 20% cosine 1.12
— 50% cosine 1.35
— 100% cosine 1.94
— NW 1 dpss 1.34
— NW 2 dpss 1.96
— NW 3 dpss 2.80
— NW 4 dpss 3.94
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Summary of today’ class

+ Non-parametric Spectral Estimation
— Bias reduction: Pre-whitening

— Statistical Properties of direct spectral estimates: Allows to
assess the variance of the spectral estimates

— Smoothing of direct spectral estimates: Two methods direct
smoothing and lag-window estimates

— First moment properties of lag window estimators: Bias in
estimates (especially leakage)

— Second moment properties of lag window estimators:
Variance of estimates and the effects of bandwidth and the
effective number of samples available.
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