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Today’s class!
•  Non-parametric Spectral Estimation!

– Estimation of Mean!
– Estimation of autocovariance sequence!
– Naïve spectral estimation: Periodograms!
– Bias reduction - Tapering!

•  Basic Idea: Determine sτ and the acvs determine 
spectrum!

€ 

S( f ) = Δt sτe
−i2πfτΔt

τ =−∞

∞
∑  for f ≤ f(N ) ≡1/(2Δt)

sτ = cov(Xt ,Xt+τ ) = E{(Xt −µ)(Xt+τ −µ)
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Estimation of mean!
•  A natural estimator for the mean and its definition as a 

consistent estimator is!

•  Chebyshev’s inequality shows!

•  Variance of the mean:!
€ 

X ≡ 1
N

Xt
t=1

N
∑ lim

N→∞
P[ X −µ > ε] = 0, for ε > 0

€ 

P[ X −µ > ε] ≤ E{X −µ 2}
ε2

=
var{X }
ε2

€ 

var{X } =
1

N 2 E{(Xt −µ)
u=1

N
∑

t=1

N
∑ (Xu −µ)} =

1
N 2 su−t

u=1

N
∑ =

1
N

1− τ
N

% 

& 
' 

( 

) 
* 

τ =−(N−1)

N−1
∑

t=1

N
∑ sτ
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Variance of Mean estimate!
•  We now may consider when N goes to infinity!

•  The sample mean is not always a consistent estimator for a 
stationary process.  A process where the sample mean 
converges to the expectation is an ergodic process!

€ 

lim
N→∞

N var{X } = lim
N→∞

1− τ
N

& 

' 
( 

) 

* 
+ 

τ =−(N−1)

N−1
∑ sτ = sτ

τ =−∞

∞
∑

and since S( f ) = Δt sτe−i2πft

τ =−∞

∞
∑ ⇒ S(0) = Δt sτ

τ =−∞

∞
∑

var{X } ≈ S(0) /(NΔt)
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Asymptotically efficient estimators!
•  If we know the covariance matrix,      , for the samples 

from our process then!

•  Then mean is asymptotically efficient if!

•  Example: Fractional difference process has!

  

€ 

ˆ µ ≡
ON
TΓN

−1X
ON
TΓN

−1ON
 where  ON = [1,1,1,1]T

€ 

ΓN

€ 

e(X , ˆ µ ) ≡
N→∞
lim

var{ ˆ µ }
var{X }

=1

€ 

S( f ) = C sin(πfΔt)α  where C > 0, α > -1; for small f ,  S( f )∝ f α

for -1 <α < 0, efficient but α > 0, e(X , ˆ µ )→ 0
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Estimation of Autocovariance 
Sequence!

•  A natural estimator for sτ is!

•  If the process expectation is used above (rather than 
the sample mean, the expectation of this estimate is sτ 
and this is an unbiased estimate for all τ≤N-1.!

•  When the sample mean is used, the estimate is 
biased.!

•  An another (usually preferred) estimator is!

  

€ 

ˆ s τ
(u ) =

1
N − τ

(Xt − X )(Xt+ τ
t=1

N−τ
∑ − X ) τ = 0,±1,,±(N −1)

  

€ 

ˆ s τ
( p ) =

1
N

(Xt − X )(Xt+ τ
t=1

N−τ
∑ − X ) τ = 0,±1,,±(N −1)
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ACVS estimators!
•  The expectation of sτ(p) is (and a biased estimator for 

large τ!

•  The two estimators are called the unbiased and 
biased estimates (even though the unbiased is also 
biased when the sample mean is used).!

•  In some cases the “unbiased” estimate has larger 
biases than the biased estimate (eg. AR(2) process)!

•  Which estimator should be used?!

€ 

E{sτ
( p )} =

1
N

sτ
t=1

N− τ
∑ = 1− τ

N( )sτ
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Properties of acvs estimates!
•  In many cases the mean square error (mse) is smaller for the 

biased estimator i.e.,!

•  Because the mse = variance + bias2, the applies when the 
variability in s(u) is more harmful than the biase in s(p). 
Specifically, for large τ, s(u) is divided by N-τ where as s(p) is 
divided by N and therefore will be smaller.  This is useful when st 
approach zero for large τ.!

•  Since correlation is avcs/variance, the s(u) estimator can generate 
correlations > 1, whereas s(p) will always be positive definite.!

•  Figures on page 192 of PW show these effects!

€ 

mse{ˆ s τ
( p )} ≡ E{(ˆ s τ

( p ) − sτ )2} < E{(ˆ s τ
(u ) − sτ )2} ≡mse{ˆ s τ

(u )}
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Periodogram: Naïve Spectrum 
estimation!

•  For a discrete, real valued stationary process with zero mean we 
have!

•  If we s(p) in the above equation we have!

•  S(p)(f) is known as the periodogram (though depends of f).!

€ 

S( f ) = Δt sτe
−i2πfτΔt

τ =−∞

∞
∑  for f ≤ f(N ) ≡1/(2Δt)

€ 

Δt ˆ s τ
( p )e−i2πfτΔt

t=−(N−1)

(N−1)
∑ =

Δt
N

Xt Xt+ τ e−i2πfτΔt

t=1

N− τ
∑

τ =−(N−1)

(N−1)
∑

=
Δt
N

Xte
−i2πfτΔt

t=1

N
∑

2
≡ ˆ S ( p )( f )
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Periodogram!
•  The periodogram is defined in the Nyquist frequency 

range !
•  If is related to the Fourier transform with the factor  
Δt/N instead of (Δt)2.!

•  For discrete frequencies and times we have!

  

€ 

ˆ s τ
( p ) =

1
2NΔt

ˆ S ( p )( ˜ f k )eiπkτ /N

k=−(N−1)

N−1
∑ ,τ = 0,±1,,(N −1),N

˜ f k ≡ k /(2NΔt)
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Properties of periodogram!
•  If S(p)(f) were an ideal estimator we would have:!

•  For some processes [1] is a good approximation but for others it 
can be very poor;!

•  [2] is blatantly false when S(f)>0 and!
•  [3] holds for certain discrete frequencies (namely the Fourier 

frequencies).!
€ 

[1] E{ ˆ S ( p )( f )} ≈ S( f ) for all f

[2] var{ ˆ S ( p )( f )}→ 0 as N →∞

[3] cov{ ˆ S ( p )( f ) ˆ S ( p )( f ')} ≈ 0 for f ≠ f '
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Expectation of S(p)(f)!
•  The expectation of S(p)(f) is given by!

•  DN(.) is Dirichlet’s Kernel and F(.) is Fejér’s Kernel.!

€ 

E{ ˆ S ( p )( f )} = Δt 1− τ
N

% 

& 
' 

( 

) 
* 

τ =−(N−1)

N−1
∑ sτe−i2πfτΔt

E{ ˆ S ( p )( f )} = NΔt DN
2 ([ f − f ']Δt)S( f ')df '

− f(N )

f(N )
∫ = F( f − f ')S( f ')df '

− f(N )

f(N )
∫

F( f ) ≡ NΔtDN
2 ( fΔt) =

Δt sin2(NπfΔt)
N sin2(πfΔt)
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Properties of Fejér’s Kernel!
•  For all N≥1 F(f)→NΔt as f→0.!
•  For N>1, f∈[-f(N),f(N)] and f≠0, F(f)<F(0)!
•  For f∈[-f(N),f(N)] and f≠0, F(f)→0 as N→∞!
•  For any k≠0 and fk=k/(NΔt), F(fk)=0 (happens because 

sin(kπ)=0)!
•  The integral of F(f) over the Nyquist frequency range 

is 1.!
•  As N goes to infinity, F(f) acts like a Dirac delta 

function and S(p)(f) approaches S(f).!
•  Following figures show F(f) for N=4, 16 and 64!
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Plots of Fejér’s Kernel!
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Bias in periodogram!
•  The amount bias in the periodogram depends of the nature of the 

spectrum (particularly its dynamic range).!
•  If the acvs is such that:!

•  This only tells us the rate of change of bias, not the magnitude of 
the bias.!

•  Biases in periodograms are shown in next two slides for an AR(2) 
and AR(4) process!

€ 

τsτ
τ =−∞

∞
∑ <∞ then E{ ˆ S ( p )( f )} = S( f ) + O( 1

N
)
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AR(2): N16, 64!
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A4(4), N=16,64!
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AR(4), N=256, 1024!
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Bias in Periodograms!
•  The bias in the periodograms is arising in the spectra 

that have high dynamic range.!
•  The biases arise from the sidelobes in the Fejer’s 

kernel. This transfer of power is called leakage.!
•  There are two common techniques for lessening the 

biases:!
– Tapering : Modifies the kernel to reduce the 

sidelobes (at the expense of something else).!
– Pre-whitening : Pre-processes the time series to 

reduce the dynamic range.!
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Bias Reduction: Tapering!
•  Tapering a method reducing the side lobes in the 

Fejer’s kernel.!
•  A products is formed htXt where ht is a sequence of 

real values called a data taper (also known as a data 
window, linear taper, linear window, fader and shading 
sequence).!

•  With a data taper we have!

€ 

ˆ S (d )( f ) = Δt ht Xte
−i2πftΔt

t=1

N
∑

2
H( f ) = Δt hte

−i2πftΔt

h=−1

N
∑

E{ ˆ S (d )( f )} = Η( f − f ')S( f ')df '
− f(N )

f(N )
∫ Η( f ) =

1
Δt

H( f ) 2
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Types of Tapers!
•  Simplest: ht=1/√N for 1≤t≤N called the rectangle or 

default taper.  This case is the standard periodogram. !
•  By setting the normalization such that sum over N of 

ht
2=1, the expectation integrated power under S(d) 

over the Nyquist frequency range will equal that under 
the true spectrum.!

•  The integral of Η(f) over the Nyquist range will also 
equal 1.!

•  The idea is select ht to minimize sidelobes.  Since 
sharp edges generate ripples, one method is to 
smooth the edges of rectangular taper.!

•  One common method is a cosine taper.!
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Cosine tapers!
•  The cosine taper called the p% cosine taper is defined 

by!

•  C is a constant such that the sum of ht is 1.!
•  When p is 100%, the taper called a Hanning Taper.!€ 

ht =

C
2
1− cos 2πt

pN$ %+1
& 

' 
( 

) 

* 
+ 

, 

$ 
- 

. 

% 
/ 1≤ t ≤ pN$ %

2

C pN$ %
2

< t < N +1− pN$ %
2

C
2
1− cos 2πt

pN$ %+1
& 

' 
( 

) 

* 
+ 

, 

$ 
- 

. 

% 
/ N +1− pN$ %

2
≤ t ≤ N

1 

2 

3 
3 
3 

4 

3 
3 
3 
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Rectangular Taper!
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20% Cosine!
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50% Cosine!
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100% Cosine (Hanning Taper)!
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Summary of Today’s class!
•  Non-parametric Spectral Estimation!

– Estimation of Mean: Possible problems with some 
processes!

– Estimation of autocovariance sequence: Concepts 
of biased and unbiased estimators!

– Naïve spectral estimation: Periodograms!
•  Leakage and bias in this method!
•  Depends on dynamic range.!

– Bias reduction - Tapering: One method for reducing 
bias.!


