12.714 Computational Data Analysis

Alan Chave (alan@whoi.edu)
Thomas Herring (tah@mit.edu),
http://geoweb.mit.edu/~tah/12.714

Today’ s class

* Non-parametric Spectral Estimation
— Estimation of Mean
— Estimation of autocovariance sequence
—Naive spectral estimation: Periodograms
—Bias reduction - Tapering

+ Basic Idea: Determine s_and the acvs determine
spectrum

S(f)=At 3 s.e 7™ for |f| < fy, = /(A1)

T=—00
Sr = COV(Xt7Xl+1;) = E{(Xt _M)(Xt+’!7 _‘u')

05/09/2012 12.714 Sec 2 L08




Estimation of mean

» A natural estimator for the mean and its definition as a

consistent estimator is

E—EX lim P[|X -y >¢]=0, for £ >0
N—o

. Chebyshev s inequality shows

E{\Y—M\z} _ var{X}

P[X-u>e¢l=

82 2

» Variance of the mean:

=

05/09/2012

N N
E E E{X,-w(X,-w}=

Esu—t = (1—)5‘1,
-1 Nee—av-p\ N

Variance of

Mean estimate

+ We now may consider when N goes to infinity

lim Nvar{X}= lim

T=—00

var{X} = S(0)/(NA?)

N —0 N_>°O‘L'=—(N—1)

and since S(f) =At Y s,

N-1 M _
2 ( ‘N)S P

e = §0)=Ar Y,

T=—00

+ The sample mean is not always a consistent estimator for a
stationary process. A process where the sample mean

converges to the expectation

is an ergodic process

05/09/2012 12.714 Sec 2 L08 4




Asymptotically efficient estimators

- If we know the covariance matrix, [y , for the samples
from our process then
ONTy'X
ONTR' Oy
+ Then mean is asymptotically efficient if

v~y . var{{}
X,0h) = — =1
XA ]\}1—1}10 var{ X}

e where Oy =[LL1,--1]"

+ Example: Fractional difference process has
S(f) = Clsin(afAr)[* where C >0, a >-1; for small f, S(f) «|f|*
for -1<a <0, efficient but a >0, e(X,ft) =0
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Estimation of Autocovariance

Sequence
* A natural estimator for s_is
1 N-t o o
3=~ SX,-X)(X,,, -X) T=0zxl-x(N-1
St N — "L" tgl( t )( t+“r‘ ) ( )

+ If the process expectation is used above (rather than
the sample mean, the expectation of this estimate is s
and this is an unbiased estimate for all t=N-1.

* When the sample mean is used, the estimate is
biased.

* An another (usually preferred) estimator is
N-t - -

3P =]1] X, = X)Xy = X) T=0zlx(N-1)
t=1

T

t+t
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ACVS estimators

* The expectation of s P is (and a biased estimator for
large ©

1 N—“L" “E‘
N tglsr = (1 - ﬁ)sr
* The two estimators are called the unbiased and

biased estimates (even though the unbiased is also
biased when the sample mean is used).

« In some cases the “unbiased” estimate has larger
biases than the biased estimate (eg. AR(2) process)

» Which estimator should be used?

E{s"} =
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Properties of acvs estimates

+ In many cases the mean square error (mse) is smaller for the
biased estimator i.e.,

mse{3"} = E{G” - 5,)°} < E{G™ - 5,)*} = mse{3{"'}

 Because the mse = variance + bias?, the applies when the
variability in s( is more harmful than the biase in s(®).
Specifically, for large T, s is divided by N-t where as s is
divided by N and therefore will be smaller. This is useful when st
approach zero for large .

« Since correlation is avcs/variance, the s estimator can generate
correlations > 1, whereas s® will always be positive definite.

+ Figures on page 192 of PW show these effects
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Periodogram: Naive Spectrum
estimation

+ For a discrete, real valued stationary process with zero mean we

have © N
S(f)=A1 Tspe” 2T for |f = fiy) =1/Q2A0)

T=—00

- If we s® in the above equation we have

(N=-1) , Ar (N-1) N-t| ,
At S 3,1(7p)€—z2fgfrAt _A4t XtXH‘T‘e—lZf;ftAt
t=—(N-1) N ze_(v-1) 1=1
2
At/N N
=1

- SP)(f) is known as the periodogram (though depends of f).
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Periodogram

+ The periodogram is defined in the Nyquist frequency
range

- If is related to the Fourier transform with the factor
AN instead of (At)2.

+ For discrete frequencies and times we have

N-1
~(p) 1 o(p) 7\, inkt /N
S = S e =01 (N-1),N
= o, 250D (N-1)

F. = k/(2NA?)
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Properties of periodogram

- If SP)(f) were an ideal estimator we would have:
[11 E{SP ()} = S(f) for all f
[2] var{8P)(f)} =0 as N — oo

[31cov{ S (/)8 ()} ~0 for f = f'

+ For some processes [1] is a good approximation but for others it
can be very poor;

+ [2] is blatantly false when S(f)>0 and

+ [3] holds for certain discrete frequencies (namely the Fourier
frequencies).
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Expectation of SP)(f)

+ The expectation of S(p)(f) is given by

N N-1 .
EQSP ()=t 3 (l—r)sre_ﬂ”fm’
r=-v-nD\ N

(P fany fov)
E{S'P(f)}=NAt [ DN(Lf-f1ADS(fYdf'= [F(f - f)S(f"df
-f(v)y -fvy

Atsin® (N7tfAr)

F(f)=NAtD?(fAt) =
(f) Dy (fAt) N sinZ (D)

« Dy(.) is Dirichlet’ s Kernel and F(.) is Fejér’ s Kernel.
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Properties of Fejér’ s Kernel

For all N=1 F(f)—=NAt as f—0.

For N>1, fe[-f,,f)] and 20, F(f)<F(0)

For f[-fn),fy] @and 20, F(f)—0 as N—o

For any k=0 and f,=k/(NAt), F(f,)=0 (happens because

sin(kst)=0)

+ The integral of F(f) over the Nyquist frequency range
is 1.

+ As N goes to infinity, F(f) acts like a Dirac delta
function and S®)(f) approaches S(f).

+ Following figures show F(f) for N=4, 16 and 64
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Bias in periodogram

The amount bias in the periodogram depends of the nature of the
spectrum (particularly its dynamic range).

If the acvs is such that:

S5, < then EGS(/)} = (/) + O )

This only tells us the rate of change of bias, not the magnitude of

the bias.

Biases in periodograms are shown in next two slides for an AR(2)
and AR(4) process
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Bias in Periodograms

+ The bias in the periodograms is arising in the spectra
that have high dynamic range.

« The biases arise from the sidelobes in the Fejer’ s
kernel. This transfer of power is called leakage.

» There are two common techniques for lessening the
biases:

—Tapering : Modifies the kernel to reduce the
sidelobes (at the expense of something else).

—Pre-whitening : Pre-processes the time series to
reduce the dynamic range.
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Bias Reduction: Tapering

+ Tapering a method reducing the side lobes in the
Fejer’ s kernel.

+ A products is formed hX, where h, is a sequence of
real values called a data taper (also known as a data
window, linear taper, linear window, fader and shading
sequence).

+ With a data taper we have

2
SD(fy=Ar gh,x,e‘”’g‘mf H(f)=At gh,e‘”’*fmf
t=1 h=-1
(@) Javy 1 )
E{S'D(fHy=" [H(f - fHS(fHdf' H(f)= Z\H(f)\
05, -fvy t 20
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Types of Tapers

+ Simplest: ht=1/\/N for 1<t<N called the rectangle or
default taper. This case is the standard periodogram.

* By setting the normalization such that sum over N of
h2=1, the expectation integrated power under S(d)
over the Nyquist frequency range will equal that under
the true spectrum.

+ The integral of H(f) over the Nyquist range will also
equal 1.

* The idea is select h, to minimize sidelobes. Since
sharp edges generate ripples, one method is to
smooth the edges of rectangular taper.

+ One common method is a cosine taper.
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Cosine tapers

* The cosine taper called the p% cosine taper is defined

by r
gl—coszim lstsM
2_ [pNJ+1_ 2
h; =1 C |_p21\7J<t<N+1_|_192NJ
gl—cos 27t N+1—Mst5N
2 |pN|+1)] 2

+ C is a constant such that the sum of h; is 1.
* When p is 100%, the taper called a Hanning Taper.
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Rectangular Taper
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Summary of Today’ s class

* Non-parametric Spectral Estimation
— Estimation of Mean: Possible problems with some
processes

— Estimation of autocovariance sequence: Concepts
of biased and unbiased estimators
—Naive spectral estimation: Periodograms
+ Leakage and bias in this method
+ Depends on dynamic range.

— Bias reduction - Tapering: One method for reducing
bias.
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