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Today’s class!
•  Linear Time-Invariant (LTI) Filters!

– Basic theory of analog filters!
– Basic theory of digital filters!
– Convolution as an LTI filter!
– Spectral Density Function determination!
–  Interpretation of spectrum via band-pass filtering!
–  Least-squares filter design!

•  Aim is to formalize the relation between input and output spectra.!
•  Also provides as way of studying stochastic processes: With 

some mild conditions, an input stationary process will generate 
an output stationary process.!
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Basic Theory: Analog!
•  A analog filter can be defined as a mapping between 

an input function and an output function: Symbolically 
L{x(.)}=y(.).  In engineering a continuous parameter 
filter is called an analog filter; in mathematics called 
an transformation or operator.!

•  Some notation:!
– For a real valued constant τ and a function x(.), 

then x(.;τ) denotes the function whose value at time 
t is given by x(t+τ),!

– A filter defined by L{x(.)}=x(.;τ) is a shift filter (e.g., if 
x(t)=sin(t); then x(t;π/2)=cos(t)!
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Linear time-invariant (LTI) analog 
filter!

•  An anolog filter is linear time invariant if it has these properites:!
–  Scale preservation: L{αx(.)} = αL{x(.)} where α is constant!
–  Superposition: L{x(.)+y(.)}=L{x(.)}+L{y(.)}!
–  Time invariance: if L{x(.)}=y(.), then L{x(.;τ)}=y(.;τ) i.e., if two 

inputs to the filter are the same except for a time shift; then 
the outputs are the same except for the same time shift.!

•  The first two properties express linearity and therefore!

•  With suitable conditions the above summation can be extended 
to infinity  !
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Relationship between input and 
output of an LTI filter!

•  Use as input to the filter a complex exponential and let y(.) 
denote the output !

•  Using the LTI properties (3) and (1) we have!

•  Since the above is valid for any value of t, the above implies!

€ 

y f (.) = L ε f (.){ } ε f (t) ≡ e
i2πft −∞ < t <∞

€ 

y f (.;τ ) = L{ε f (.;τ) = L{ei2πfτε f (.)} = ei2πfτ y f (τ )

which implies that

y f (t;τ) = y f (t + τ) = ei2πfτ y f (τ) for all t and τ

€ 

y f (t) = ei2πft y f (0) for all t i.e.,  y f (.) =  y f (.)ε f (.)

Denote G( f ) = y f (0) and we have L{ε f (.)} =G( f )ε f (.)
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LTI relations!
•  We have L{εf(.)}=G(f)εf(.).  The complex exponentials 

are the eigenfunctions for the LTI filter and each G(f) 
is called an associated eigenvalue.!

•  Importance: If the input to an LTI filter is a complex 
exponential, then the output is same complex 
exponential multiplied by G(f).  !

•  We have!

€ 

x(t) = α f e
−i2πft  

f
∑ then y(.) = L{x(.)} y(t) = α f G( f )e−i2πft  

f
∑

When the spectral density function (sdf) exists for x SX( f )

SY ( f ) = G( f ) 2SX ( f )
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Transfer function G(.)!
•  The G(.) is called the transfer function or frequency response 

function.  It relates the input and output spectra and is 
independent of time.  No power is transferred between 
frequencies.!

•  In general G(f) is complex and can be written as 

where |G(f)| is called the gain function and the θ(f) is the phase 
function. !

•  The negative is θ(f) called the phase shift function and  
the quantity !€ 

G( f ) = G( f )eiθ ( f )

€ 

−
1

2π
dθ( f )
df

 is called the group delay. 
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LTI digital filters!
•  The relationship between sequences (discrete rather can 

continuous functions) are called digital filters.!
•  For LTI filter the same properties of scale preservation, 

superposition, and time invariance apply.!
•  The LTI digital filtering theorem is: If {Xt} is a discrete stationary 

process with zero mean and integrated spectrum S(I)
X(.) and L is 

a LTI filter with transfer function G(.) such that!

•  {Yt} is a discrete stationary process !

€ 

G( f ) 2

−1/2

1/2
∫ dSX

(I )( f ) <∞ then {Yt} = L{{Xt}}

dSY
(I )( f ) = G( f ) 2dSX

(I )( f )
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Convolution as an LTI filter!
•  Consider an LTI analog filter of the following form!

•  The function g(.) is called the impulse response 
function because if X(.) is a dirac delta function the 
output of the convolution is g(t) i.e., L{d(t)}=g(t)!

•  To find the transfer function we use!
€ 

L{X(t)} = g(u)X(t − u)du ≡Y (t)
−∞

∞
∫

€ 

L{ei2πft} = g(u)ei2πf (t−u )du
−∞

∞
∫ = ei2πft g(u)e−i2πfudu

−∞

∞
∫

G( f ) = g(u)e−i2πfudu
−∞

∞
∫   This is just the Fourier Transform
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Convolution for digital LTI filter!
•  For discrete processes the same relationships apply!

•  The stationary process sdf are related by!
€ 

L{Xt} = guXt−u
u=−∞

∞
∑ ≡Yt

G( f ) ≡ gue
−i2πu

u=−∞

∞
∑  for | f |≤1/2

€ 

SY ( f ) = G( f ) 2SX ( f )  for f ≤1/2
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Determination of SDF by LTI filtering!
•  The theory developed so far allows us to determine 

spectral density functions for discrete stationary 
processes.!

•  Moving average process!

  

€ 

Xt = εt −θ1,qεt−1 −θ2,qεt−2 −−θq,qεt−q
Define L{yt} = yt −θ1,q yt−1 −θ2,q yt−2 −−θq,q yt−q L{εt} = Xt

L{ei2πft} = ei2πft −θ1,qe
i2πf (t−1) −θ2,qe

i2πf (t−2) −−θq,qe
i2πf (t−q )

= ei2πft (1−θ1,qe
−i2πf −−θq,qe

−i2πfq )

G( f ) =1−θ1,qe
−i2πf −θ2,qe

−i2πf 2 −−θq,qe
−i2πfq

SX ( f ) = G( f ) 2Sε ( f ) =σ
ε
2 1−θ1,qe

−i2πf −−θq,qe
−i2πfq 2
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SDF of AR process!
•  The same process can be used for an AR process!

•  An AR process is stationary if the denominator above never goes 
to zero.!

  

€ 

Xt = φ1,pXt−1 ++ φ p,pXt− p + εt
Define L{yt} = yt −φ1,p yt−1 −−φ p,p yt− p then L{Xt} = εt

G( f ) =1−φ1,pe
−i2πf −−φ p,pe

−i2πfp

Sε ( f ) = G( f ) 2SX ( f )

SX ( f ) =
σ
ε
2

1−φ1,pe
−i2πf −−φ p,pe

−i2πfp 2
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SDF of ARMA process!
•  The previous two cases can be merged for an ARMA 

process!

  

€ 

Xt = φ1,pXt−1 ++ φ p,pXt− p + εt −θ1,qεt −−θq,qεt−q

SX ( f ) =σ
ε
2 1−θ1,qe

−i2πf −−θq,qe
−i2πfq 2

1−φ1,pe
−i2πf −−φ p,pe

−i2πfp 2
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Filter terminology!
•  Field is very large (see references p 169,PW)!
•  Types of filters:!

– Cascaded: An arrangement of n-filters where the output of 
one is the input to the next.  !
•  If all the filters are LTI filters, then an input stationary process will 

generate and output stationary process.!
•  The total integrated spectrum will be given by!

•  Note for LTI filters, the output does not depend on the order of the 
filters.!

–  Ideal low-pass filter: Transfer function  !

  

€ 

dSn+1
(I ) ( f ) = Gn ( f )

2Gn−1( f )
2G1( f )

2dS1
(I )( f )

€ 

G( f ) 2 =
1,  if | f |≤ f0
0,   otherwise
# 
$ 
% 
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Filter terminology!
•  Filter types:!

– Ideal high-pass filter:!

– Ideal band-bass filter: In the band [f1,f2]!

•  A notch filter is one that removes a specific frequency 
range (e.g., to remove diurnal effects)!

•  None of the ideal filters can be implemented with finite 
length sequences.!

€ 

G( f ) 2 =
1,  if | f |≥ f0
0,   otherwise
# 
$ 
% 

€ 

G( f ) 2 =
1,  if 0 < f1 ≤| f |≤ f2
0,             otherwise
# 
$ 
% 
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Filter Terminology!
•  Given an LTI filter of the form:!

•  The filter is said to be causal if gu=0 for all u<0!
•  If gu is zero outside a finite range of u, the filter is 

called a finite impulse response (FIR) filter.!
•  If this is not the case then it is an infinite impulse 

response (IIR) filter.!

€ 

L{Xt} = guXt−u
u=−∞

∞
∑
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Interpretation of Spectrum!
•  Ideal band pass filters allow a physical interpretation 

of the integrated spectrum.!
•  Given an ideal band pass filter between f and f+df, 

then the passing on stationary process through will 
yield signal in narrow bandwidth.  The variance of this 
narrow bandwidth signal will be!

€ 

σ X
2 = dSX

(I )( f )
−∞

∞
∫ = SX ( f )

−∞

∞
∫ df

G( f ) 2 =1 if f '≤ f ≤ f '+df '; else = 0  

SY ( f ) = G( f ) 2SX ( f ) and hence σY
2 = 2SX ( f ')df '
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Example of LTI digital filtering!
•  Consider an acausal LTI digital filter:!

•  The next two figures show transfer function for above case and a 
filter g(2) = 2*g(1)!

€ 

gu
(1) =

1/2, u = 0
1/4, u = ±1
0, otherwise

" 

# 
$ 

% $ 

G(1)( f ) = g−1
(1)ei2πf + go

(1) + g+1
(1)e−i2πf = cos2(πf ) f ≤1/2

The residual is defined by filtered signal - original signal

H (1)( f ) = −g−1
(1)ei2πf + (1− go

(1)) − g+1
(1)e−i2πf = sin2(πf ) f ≤1/2
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g(1) Transfer function and filter!
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g(2)=2*g(1) transfer function and filter!
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Conditions on Transfer function!
•  As we just seen; an LTI filter does not necessarily 

behave as a smoothing filter!
•  If we want a filter that traces the trend of a given time 

series, the LTI filer must be appropriately normalized.!
•  Filter can be normalized by requiring that if the input 

function is locally smooth, the filtered value should 
match the input.!

€ 

guxt−u =
u=K

K
∑ xt when xt =α + βt

if gu  is symmetric (g−u = gu ) then above satisfied if gu =1
u=K

K
∑
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Normalized transfer functions!
•  If the impulse response is symmetric and sums to 1 

then, the transfer function is given by!

•  Hence to define as low pass filter whose residuals are 
a high pass filter, the sum of the coefficients should be 
one, and the filter should be symmetric. The latter is 
not required.!€ 

G( f ) = g0 + 2 gk cos(2πfu) G(0) =1
u=1

K
∑

The residual transfer function is H( f ) =1-G( f )
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Least squares filter design!
•  The ideal low pass filter and its impulse response are!

•  As we have seen before the least squares fit with a 
finite, odd number of coefficients, K, is given by!

€ 

GI ( f ) ≡
1       if f ≤W
0,W < f ≤1/2
$ 
% 
& 

gu,I ≡ GI ( f )ei2πfudf =
2W , u = 0

sin(2πWu)
πu

. u ≠ 0

$ 
% 
) 

& ) −1/2

1/2
∫

€ 

gu,K ≡
gu,I        if u ≤ K /2$ %
0,            otherwise

& 
' 
( 

GK ( f ) ≡ gu,Ke
−i2πfu

u=− K /2$ %

u= K /2$ %
∑
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LSQ low pass filter K=65!
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Alternative low pass filter with 
triangular convergence factor!
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Low pass filters!
•  The previous figure was generated using:!

•  The factor γ is included to ensure sum gu =1!
•  Other variations on the filter design include fitting to 

the transfer function: !€ 

gu,K
(c) = cugu,K   with  cu =

γ 1− 2 u
K +1

$ 

% 
& 

' 

( 
) , u ≤ K /2+ ,

0.                 otherwise 

- 
. 
/ 

0 / 

€ 

Gδ ( f ) =

1.                                       f ≤W −δ
1
2

1+ cos(π f −W + δ
2δ

& 

' ( 
) 

* + 
,W −δ < f ≤W + δ

0,                               W + δ < f ≤1/2

, 

- 
. 

/ 
. 
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Summary of today’s class!
•  Linear Time-Invariant (LTI) Filters!

– Basic theory of analog filters: Continuous!
– Basic theory of digital filters: Discrete in time !
– Convolution as an LTI filter!
– SDF determination!
– Interpretation of spectrum via band-pass filtering!
– Least-squares filter design: Low pass filters!

•  Text book also discusses using dpss functions as low 
pass filters.!


