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Today’s class!
•  Stochastic Spectral Estimation!

– Spectral representation of a stationary process!
– Basic properties of the spectrum!
– Classification of spectra!
– Sampling and Aliasing!
– Comparisons of spectral density function and auto 

covariance sequence!
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Stochastic Spectral Estimation!
•  Spectral Representation:!

– We have discussed representations for deterministic functions 
or sequences in terms of linear combinations of sinusoids with 
different frequencies, and defined energy or power from them.!

–   Assuming square integrability and in a mean square sense, 
we have: !
•  periodic function → discrete frequencies → infinite energy but 

finite power over discrete set of frequencies.!
•  non-periodic function → continuous frequency → finite energy !

– We now need to find a way to represent a stationary process 
in terms of a sum of sinusoids so that we can define its 
spectrum, just as we have done for deterministic functions. !

– Stationary processes have constant variance and, with the 
exception of harmonic processes, a typical realization has 
infinite energy.  !
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Spectral Representation!
•  For stationary stochastic processes, a spectral 

representation exits!
•  We motivate the spectral representation by 

considering a real valued discrete time harmonic 
process:!

•  Dl and fl are constants.  We assume Δt=1 and hence 
the frequencies are 0< fl <1/2.!

€ 

Xt = Dl cos(2πfl t + φl ) where φl  is uniform dist. [-π,π ]
l=1

L
∑
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Spectral Representation!
•  We can rewrite the equation as!

•  With zero expectation for Xt, C0=0 at f0=0.  Since the 
phase are uncorrelated random variables, C-l and Cl 
are uncorrelated (although C-l = C*l). !

•  We have E{Cl}=0 and var{Cl}=Dl
2/4.!

•  We can define the variance spectrum by !

€ 

Xt = Cle
i2πf l t

l=−L

L
∑  where Cl = Dle

iφl /2 and C−l = Dle
−iφl /2

  

€ 

S (V )( f ) ≡ Dl
2 /4, if f = f l ,l = 0,±1,…,±L
0,                        otherwise

# 
$ 
% 
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Spectral Representation!
•  We now define complex stochastic process!

  

€ 

Z( f ) ≡ C j
j=0

L
∑ , fl < f ≤ fl+1,with l = 0,1,…,L

Z( f ) =

0,   for   0 ≤ f ≤ f1
C1,  for   f1 < f ≤ f2

C1 + C2,  for   f2 < f ≤ f3
C1 + C2 + C3,  for   f3 < f ≤ f4

% 

& 
' ' 

( 
' 
' 

dZ( f ) =

Z( f + df ) − Z( f ),   for   0 ≤ f <1/2
0, for   f =1/2

dZ* (− f ),    for   -1/2 ≤ f < 0

% 

& 
' 

( ' 

df is small 
positive 
increment!
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Spectral Representation!
•  We therefore have for l>0!

•  The covariance between dZ(f) and dZ(f’) for f≠f’ is 
zero and the {Z(f)} process is said to have orthogonal 
increments and the process is an orthogonal process.!

•  Note that!
€ 

dZ( fl ) = Z( fl + df ) − Z( fl ) = C j −
j=0

l
∑ C j

j=0

l−1
∑ = Cl

for any f ≠ fl dZ( f ) = 0

€ 

E{dZ( fl )
2} = E{Cl

2} = Dl
2 /4
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Spectral Representation!
•  Now let g(.) be a continuous function over the interval [-1/2,1/2] 

and let H(.) be a step function with jumps at  -1/2<a1<a2<…
<an<1/2 with finite sizes b1,b2,..,bn.!

•  From the definition of the Reimann-Stieltjes integral!

•  This is called the spectral representation of a stationary process!
•  By allowing N (here) and L on slide 5 to go to infinity, the 

equation above applies to any discrete valued stationary process.!
€ 

g( f )dH( f ) = g(ak )bk
k=1

N
∑

−1/2

1/2
∫  with g( f ) = ei2πft  and H( f ) = Z( f )

we have Xt = ei2πftdZ( f )
−1/2

1/2
∫
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Properties of Z(f)!
•  The orthogonal process Z(f) has the following 

properties:!
– E{dZ(f)}=0 for al |f|<1/2!
– E{| dZ(f)|2}=dS(I)(f) for all |f|≤1/2 where the bounded, 

non-decreasing function S(I)(f) is called the 
integrated spectrum of {Xt}.!

– For any two frequencies f≠f’ in the interval [-1/2,1/2] 
cov{dZ(f),dZ(f’)}=E{dZ*(f),dZ(f’)}=0!

•  The equation of {Xt} says any stationary process can 
be represented by sum of complex exponentials with 
random amplitudes and phases; and the square 
modulus of dZ(f) defines the integrated spectrum.!
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Relationship between acvs and S(I)(f)!
•  We can write the relationship between the autocovariance 

sequence (sτ) and the integrated spectrum using:!

€ 

Xt
*Xt+τ = e−i2πf ' t

−1/2

1/2
∫

−1/2

1/2
∫ ei2πf (t+τ )dZ* ( f ')dZ( f )

sτ = E{Xt
*Xt+τ } = ei2π ( f − f ' )t

−1/2

1/2
∫

−1/2

1/2
∫ ei2πfτ E{dZ* ( f ')}E{dZ( f )}

sτ = ei2πfτ E{dZ( f ) 2}
−1/2

1/2
∫ = ei2πfτ dS (I )( f ) due to orthogonal increments

−1/2

1/2
∫

If S (I )( f ) is differentiable then

E{dZ( f ) 2} = dS (I )( f ) = S( f )df
S(f) is the spectral density function (sdf) and

sτ = S( f )ei2πfτ df
−1/2

1/2
∫  and the inverse relation S( f ) = sτ

t=-∞

∞
∑ e−i2πft
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Comments!
•  From the previous page we can show:!

•  The sdf S(f) is often called the power spectral density 
function (psdf)!

•  For the continuous time case:!€ 

var(Xt ) = s0 = S( f )df
−1/2

1/2
∫

€ 

s(τ) = S( f )ei2πfτ
−∞

∞
∫ df  and S( f ) = s(τ )e−i2πfτ dτ

−∞

∞
∫

04/30/2012! 12.714 Sec 2 L06! 12!

Properties of the Spectrum!
•  From the definition of the integrated spectrum we have!

•  S(I)(f) exists for all stationary processes by S(f) may not exist if S(I)

(f) is not differentiable.  (Introduction of Dirac functions can solve 
this problem).!

•  S(f) for a white noise process is constant and equal to σ2 
(remember is integration is from [-1/2,1/2].!

•  In some definitions, the integral is from [0,1/2] in which case S(f) 
is doubled (3dB on log plot)!

€ 

S (I )( f ) = S( f ')df ' 0 ≤
−1/2

f
∫ S (I )( f ) ≤σ 2

S (I )(−1/2) = 0 S (I )(1/2) =σ 2
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Classification of Spectra.!
•  Integrated spectra are similar to probability distribution functions 

(with S(f) corresponding to probability density functions).!
•  We can write S(I)(f)=S1

(I)(f)+ S2
(I)(f)+ S3

(I)(f) 
where!
– S1

(I)(f) is absolutely continuous (derivative every)!
– S2

(I)(f) a step function with jumps at specific frequencies!
– S3

(I)(f) is continuous singular function (this latter case is 
pathological and not normally encountered).!

•  S1
(I)(f) are purely continuous spectrum and their avcs decays to 

zero as τ goes to infinity. Most ARMA processes are of this type!
•  S2

(I)(f) are purely discrete spectrum and the acvs does not decay 
to zero. Harmonic processes are of this type.!

•  Combinations are possible.  Discrete with white sdf is a discrete 
spectrum while discrete with non-white is mixed spectrum.!
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Sampling and Aliasing!
•  We can define a discrete sampling of a continuous 

time series as Xt=X(t0+tΔt),  t =0,±1,±2, …!
•  If {X(t)} is stationary then {Xt} is also stationary.!
•  Based on the sampling (notice we still have an infinite 

number of samples)!

€ 

sτ = cov{Xt ,Xt+τ } = cov{X(t0 + tΔt),X(t0 + [t + τ]Δt)} = s(τΔt)
and hence sτ  is s(.) sampled at intervals ofΔt

SXt ( f ) = SX(t)( f + k /Δt), f
k=-∞

∞
∑ ≤

1
2Δt

≡ f(N ) 
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Example of aliasing!
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Comparison of SDF and ACVS!
•  In the example just shown, the sampling interval of 1/2 

would seem to under sampled, however, these 
samples will be close to uncorrelated and this could 
be advantageous.  Some suggest sampling at twice 
the Nyquist rate to avoid problems near the Nyquist 
rate (called oversampling).  !

•  While the SDF and ACVS contain the same 
information (Fourier transform of each other), often 
structure can be seen in the SDF that is not obvious in 
the ACVS as shown in the next figures.!
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AR(4) SDF and AVCS!
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AR(4) SFD and AVCS + 0.35 f!
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AR(4) SFD and AVCS + bigger f!
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Example of AR(4)!
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Comparison of sample acvs with 
theory!
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Spectrum from sample!
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Summary!
•  Stochastic Spectral Estimation!

– Spectral representation of a stationary process!
– Basic properties of the spectrum!
– Classification of spectra!
– Sampling and Aliasing!
– Comparisons of spectral density function and auto 

covariance sequence: Note that changes to the 
spectrum can be clear but not so obvious is acvs.!


