
1	



12.714 Computational Data Analysis!

Alan Chave (alan@whoi.edu)!
Thomas Herring (tah@mit.edu), !

http://geoweb.mit.edu/~tah/12.714 !

04/09/2012! 12.714 Sec 2 L03! 2!

Deterministic Spectral Analysis!
•  Today’s class!

– Fourier Theory: Continuous time/Discrete frequency!
– Fourier Theory: Continuous time and frequency!
– Examples of transforms!
– Fourier transform theorems (from Bracewell, R, N., 

The Fourier Transform and its Applications, 
McGraw-Hill Book Company, New York, pp. 444, 
1978)!

– Band-limited and time limited functions!
– Continuous/Continuous reciprocity relationships!
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Fourier Theory!
•  Examine in this class definition of various spectra for 

deterministic functions of time (again could be other 
sequential quantity)!

•  Rational:!
– A realization of a stochastic process is 
“deterministic” and so material here motivates the 
definition of spectrum for stationary process!

– Concept here (reciprocity, tapers) apply to 
deterministic and stochastic processes!

– Properties of deterministic functions appear in many 
stochastic processes.!
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Fourier Theory - Continuous time/
Discrete frequency!

•  Given that cos(2πnt/T) and sin(2πnt/T) define periodic 
functions of t with T>0, we can write a general periodic 
function as!

•  This expression can be written more compactly as!

€ 

˜ g p(t) =
a0
2

+ an cos(2πnt /T )+
n=1

∞
∑ bn sin(2πnt /T )

with an{ } and bn{ } (real or complex) constant such sum converges for all t.

€ 

˜ g p(t) = Gnei2πfnt   : eqn (1)  where fn = n/T and
n=−∞

∞
∑

Gn ≡

(an − ibn ) /2,   for n ≥1
(a0 /2),            for n = 0
(an + ibn ) /2,    for n ≤ -1

) 

* 
+ 

, + 
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Fourier Theory Expansion!
•  The use of negative frequencies is convenient 

mathematical trick that allow simplification of 
expressions and an easy addition for complex and 
real functions.!

•  If a and b are real then G*-n=Gn and |G-n|=|Gn|!
•  Any bounded, periodic function can be, in a certain 

sense, be represented by the expansion on the 
previous slide.!

•  This result can be shown by defining:!

€ 

gp,m (t) = Gne
i2πfnt

n=−m

m
∑  with Gn =

1
T

gp (t)e−i2πfnt
−T /2

T /2
∫ dt
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Fourier Theory: Expansion!
•  As m goes to infinity: gp,m will converge to gp in mean 

square sense i.e., !

•  This type of equality is denoted with a ms over the 
equals sign.!

•  Relationship derived with orthogonality relation!

•  Eqn (1) is the Fourier series representation, Gn in nth 
Fourier coefficient. !

€ 

lim
m→∞

gp(t)− gp,m (t)
2

−T /2

T /2
∫ dt = 0

€ 

ei2π ( fn− fm )tdt =
0, m ≠ n
T , m = n
% 
& 
' −T /2

T /2
∫
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Energy in time series!
•  Energy in time series over period [-T/2,T/2] is the integral over 

the interval of gp(t)2.  Using orthogonality we can show!

•  This is Parseval’s Theorem (or Rayleigh’s Theorem) for Fourier 
series.!

•  Since the function is periodic, there is infinite energy over infinite 
time and so the concept of power is introduced: Energy per unit 
time.  This is the above equation divided by T!

•  While the energy is infinite, over infinite time, the power is finite.!
•  The discrete power spectrum is defined to be Sn=|Gn|2!

€ 

gp(t)
2

−T /2

T /2
∫ dt = GnGm

* ei2π ( fn− fm )tdt
−T /2

T /2
∫ =T Gn

2

n=−∞

∞
∑

m=−∞

∞
∑

n=−∞

∞
∑
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Discrete Power Spectrum!
•  The original signal can not be recovered from the 

power spectrum but can be recovered for the Fourier 
coefficients themselves!

•  The following example demonstrates this.!

€ 

gp(t) =
1−ϕ2

1+ϕ2 − 2ϕ cos(t)

gp,m (t) = Gne
i2πfnt

n=−m

m
∑ =1+ 2 ϕn cos(nt)

n=1

m
∑

Sn =ϕ2 n  is the discrete power spectrum



5	



04/09/2012! 12.714 Sec 2 L03! 9!

04/09/2012! 12.714 Sec 2 L03! 10!

Discrete Fourier series!
•  One question that arises in the previous example is: If 

we are going to truncate the Fourier series to order m, 
are the Gn that we determine from the Fourier series 
the best choice or would different coefficients be 
better?!

•  Question addressed p 60 of PW and when the energy 
of the difference between gp(t) and the approximation 
to it is used, the use of the Fourier coefficients 
minimizes the energy of the difference.  This is the 
least squares fit.!
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Fourier Theory: Continuous Time 
and Frequency!

•  Suppose we have a non-periodic function.  We can 
not expand this function in Fourier series (i.e., discrete 
frequencies).!

•  However, if we take a section of the function over 
interval T, and the function is square integrable over 
the interval, and replicate this piece so that it is 
periodic, we can expand in Fourier Series as before.!

€ 

gT (t) =
ms

Gn,Te
i2πfnt

n=−∞

∞
∑  where T is [-T/2,T/2]

Gn,T =
1
T

g(t)e−i2πfntdt
−T /2

T /2
∫
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Fourier Theory: Continuous time and 
frequency!

•  Given the expansion for interval -T/2 to T/2, we have!

•  The equations above are the Fourier integral representation and 
G(f) is the Fourier Transform of g(t).!

•  (In the literature you will see different normalizations of the 
Fourier and inverse Fourier transforms)!

€ 

g(t) ≡ gT (t) =
ms

g(t)e−i2πfntdt
−T /2

T /2
∫

& 

' 
( 

) 

* 
+ ei2πfntΔf ; Δf =1/T

n=−∞

∞
∑

As T→∞,  Δf → 0 and summations become integrals 

g(t) =
ms

G( f )ei2πftdf , G( f ) ≡ g(t)e−i2πftdt
−∞

∞
∫

−∞

∞
∫
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Fourier Transform!
•  The function pair g(t) G(f) are Fourier transform 

pairs.  In general, G(f) is complex and can written as 
G(f) = |G(f)|eiθ(f) where θ(f) is a phase as a function of 
frequency.  !

•  |G(f)| is often referred to as the amplitude spectrum!
•  The energy in the function is related to G through!

•  |G(f)|2 (=G*(f)G(f)) is called the energy spectral density 
function. !
€ 

g(t)2−∞
∞∫ dt = G( f )2−∞

∞∫ df
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Example!
•  Gaussian Probability density function:!

•  Sample plots!

€ 

gσ (t) =
1
2πσ 2

e−t
2 /(2σ 2 ) Gσ ( f ) = e−2π

2 f 2σ 2
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Examples of 
common 

transforms!
Bracewell p. 386-398 

has a “pictorial” set 
of transforms!

Note: the i’s on some 
transform.  Real 
functions often have 
imaginary 
transforms.!
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Fourier Transform Theorems!
•  The following is set of basic theorems commonly 

encountered in working with Fourier transforms.!
•  Here we use x and s as domain variables, f(x) and 

F(s) are the transform pair!
•  Similarity  theorem:!

•  Addition theorem:!

•  Shift theorem: !€ 

f (ax)e−i2πxsdx =
1
a
F s
a
$ 
% 
& 
' 
( 
) 

−∞

∞
∫

€ 

[ f (x)+ g(x)]e−i2πxsdx
−∞

∞
∫ = F(s)+G(s)

€ 

f (x − a)e−i2πxsdx
−∞

∞
∫ = e−i2πasF(s)
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Fourier Transform Theorems!
•  Modulation theorem:!

•  Convolution theorem:!

€ 

f (x)cos(ωx)e−i2πxsdx
−∞

∞
∫ =

1
2
F(s −ω /(2π ))+ 1

2
F(s+ω /(2π ))

€ 

h(x) = f (u)g(x −u)du
−∞

∞
∫

H (s) = F(s)G(s)

f (x' )g(x − x' )dx'
−∞

∞
∫

% 

& ' 
( 

) * 
e−i2πxsdx

−∞

∞
∫ = f (x' )e−i2πx'sG(s)dx

−∞

∞
∫ '= F(s)G(s)
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Fourier Transform Theorems!
•  Rayleigh’s Theorem:!

•  Power Theorem: !

•  Autocovariance theorem: Fourier transform of 
autocovariance function is transform squared.!

€ 

f (x)2dx
−∞

∞
∫ = F(s)2ds

−∞

∞
∫

€ 

f (x)g*(x)dx
−∞

∞
∫ = F(s)G *(s)ds

−∞

∞
∫

€ 

F(s)2ei2πxs
−∞

∞
∫ ds = f *(u) f (u + x)du

−∞

∞
∫
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Fourier Transform Theorems!
•  Derivative theorem: 

where f’(x) is the derivative of the function with 
respect to x.  (Theorem proved with shift theorem).!

•  Derivative of a convolution: Derivative of a convolution 
is the convolution with the derivative of either function. 
(Shown with theorem above since one derivative to 
multiply transform by i2πs, then inverse will generate 
derivative.!

€ 

f '(x)e−i2πxs
−∞

∞
∫ dx = i2πsF(s)

04/09/2012! 12.714 Sec 2 L03! 20!

Band-Limited and Time-limited 
functions!

•  Most signals have a high-frequency cutoff (mainly due to high 
frequency losses).  In some cases, there are low frequency cut 
offs as well (e.g., seismic recorders).  If there is no energy above 
a frequency W, the signal is band-limited in the band [-W,W].!

•  These signals are smooth due to finite higher derivatives (a 
Taylor series expansion exists for every point).!

•  A time-limited signal is one that is zero for all |t|>T/2.  (Seismic 
signals after earthquakes are time-limited).!

•  The only time-limited and band-limited signal is zero. (Because a 
Taylor Series expansion can be made anywhere, choosing a time 
when the signal is zero (and all derivatives are zero) shows the 
whole function must be zero).!
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Reciprocity Relationships: 
Continuous/Continuous!

•  Relationship between time and frequency domains 
leading to fundamental uncertainty relationships!

•  Similarity theorem: if g(.) and G(.) are a Fourier 
transform pair then!

•  Thus if one domain expands horizontally and vertically 
the other contracts in the corresponding directions!

•  This form is often shown with the |a| scaling on just 
one side  of the equation.!

€ 

a1/2g(at)⇔ 1
a1/2 G( f /a) are Fourier Transform Pairs
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Equivalent Width!
•  For real functions that are positive, peaked near zero we can 

define an equivalent width as the width needed for a box of the 
height at g(0) so that area of the box is the same as the integral 
of the function.!

•  Because of reciprocity we can do this is both Fourier domains 
and the widths are inversely related i.e.,!

•  These concepts used in defining bandwidth.  Note: compact 
signals in one domain (e.g. short pulse) are wide in the other 
domain.!

•  Example: Internet bandwidth, more bandwidth shorter time to 
transmit bit thus faster speed.!

€ 

width{g(.)} = g(t)dt /g(0) =
G(0)
G( f )df−∞

∞∫−∞

∞
∫ = 1

width{G(.)}
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Fundamental Uncertainty 
Relationship!

•  This is a version of the Heisenberg’s uncertainty principle.  
Instead of using area under the function to define width we use 
the second moment or variance.!

•  In this form, we are treating g(.) as  a probability density function!
•  With some derivation the Heisenberg uncertainty principle can be 

shown: !
€ 

σ ˜ g 
2 = (t −µ ˜ g )

2 ˜ g (t)dt,  where 
−∞

∞
∫ µ ˜ g = t ˜ g (t)dt

−∞

∞
∫

and ˜ g (t) = g(t) / ˜ g (t)dt
−∞

∞
∫   with  0 < ˜ g (t)dt = C

−∞

∞
∫ <∞

widthv{g(.)} ≡ 2 3σ ˜ g 

€ 

σ g
2σG

2 ≥1/16π 2
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Summary of today’s class!
•  Matrerial covered today!

– Fourier Theory: Continuous time/Discrete frequency!
– Fourier Theory: Continuous time and frequency!
– Examples of transforms!
– Fourier transform theorems (from Bracewell, R, N., The 

Fourier Transform and its Applications, McGraw-Hill Book 
Company, New York, pp. 444, 1978)!

– Band-limited and time limited functions!
– Continuous/Continuous reciprocity relationships!


