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Stationary Stochastic Processes

+ Class Today:
— Stochastic Processes
— Notation
—Basic Theory
—Real-valued stationary processes
— Complex-valued stationary processes
—Discrete Parameter Stationary Processes
—Continuous parameter processes
—Use as models of data
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Stochastic Processes

+ A stochastic process is a family of random variables indexed by t
where t belongs to an index set T.

+ A stochastic process is one which a particular sample, called a
realization, from all possible realizations, called the ensemble is
selected.

- A stochastic is denoted by: { X():t ET'}

« The index t is often time but can be other quantities such as
distance.

— If tis continuous, the process is called continuous parameter
(or continuous time)

— If tis discrete, the process is called discrete parameter (or
discrete time).
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Notation

* Notation to be used (and used in PW)
+ {X;} discrete parameter, {X(t)} continuous parameter

+ If a range for t is not specified, then all integers for
discrete, and all real axis for continuous

* Multiple stochastic processes will be given separate
names (e.g. {Y(t)}) or an additional index e.g {X,} and
{Xi it or {X(t,j)} and {X(t,k)} for discrete and continuous
parameters.

+ Symbol Z will be reserved for complex process such
as Z, = X;; + iX,,and i=sqri(-1). X, 4 + iX,, are real
valued stochastic processes.
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Basic Theory

+ Since a stochastic process is composed of a set of random
variables, we can define at a specific t the cumulative probability
distribution function (CPDF) F,(a) = P[X,=a], then

E{X,} = [*, xdF,(x)= ,

var{X,} = [* (x-u,)*dF,(x)= o7

+ This called the Riemann-Stieltjes integral. This form has the
advantage that continuous and discrete probability distributions
can be used depending on the continuity of the derivatives of
Fi(a)

+ The full stochastic process can be defined by the n-dimensional
cumulative probability distribution function

Fiity 3.0, (01,02,03,.0,) = PLIX, sa1.X,, <ay.X,, <a3..X, =<a,]
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Real Value Stationary Processes

« Stationary processes have properties that are
invariant with time: Two types

— Complete stationarity (strong/strict sense): If the
CPDF for all n=1 and for any t,,t,,....,t, in the index
set, and for any T such that t;+t,...,t +t are in the
index set
‘El 143 (a,ay,--,a,) = E1+r12+1:,-~-13+17(a1 sdy e, dy )‘

— Second-order stationarity (weak/wide-sense/
covariance) all joint first and second moments exist
and are the same for the conditions above (ie.,
expectation and variance are the same).
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Stationary processes

+ Second-order stationarity: From the definition we have
E{X,}=u E{X'}=p, =var{X,}=p,-u’=0"
constant and independent of t. With shift t =1 -1,
E{X, X, }=E{X X, .}

+ We define the autocovariance sequence (acvs) for a
discrete process as

Cov{X, .X,, } = E{[X, - ul[X, -ul} = E{X, X, } -1’
s, =Cov{X,,X,,.} =Cov{X,y,X }
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Stationary procsses: Continuous

+ For a continuous process the autocovariance function (acvf) is
s(t)=cov{X(@),X(t+1)}=cov{X(0),X(7)}
7 is called the lag and is the |f; — 1, |

+ Some Properties of acvs and acvf
— The variance of the process is given by s, or S(0)

— The autocorrelation sequence (acs) and autocorrelation
function (acf) are p,=s/s, and p(t)=s(t)/s(0) (Difference in
engineering literature).

- p, and p(t) are bounded between -1 and +1.

— Sequence {s_} is positive semi-definite and therefore {s_} can
not be an arbitrary sequence even if all the correlations are
bounded in -1 to 1. Strict limits on negative correlations.
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Properties of acvs

+ The two dimensional variance-covariance matrix for a
contiguous portion of the process is called a Toeplitz
matrix because the elements depend only on the row
and column difference. Since the absolute value of
the difference is not important, it is a symmetric
Toeplitz matrix.

 For a process with a Gaussian cpdf, wide-sense
stationarity implies strict sense stationarity because
the cpdf is defined totally by the first and second
moments.
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Complex Stationary processes

« Complete processes are similar to real valued ones
with some exceptions (actually all the complex
formulas are valid for real valued ones but not visa-
versa.).

+ The differences arise from the definition of covariance.

Z, =X +iX,, E{Z}=w+iu,=u

cov{Z,,Z,} = E{[Z, - M]*[Z,2 — u]} (* is complex conjucate)
COV{Z[ 7Zt+17} = E{[Zt - ALL]* [Zt+‘[ — Au']} = S‘[

* Now s_=s_* and for continuous s(-t)=s*(t)
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Complex processes

+ The positive semi-definite condition becomes
n n n

Var{z Cth]}= E D s,j_,kcjcz >0

j=1 Jj=lk=1

* Notice the conjugate on the covariance element

» For complex processes, the covariance matrix is

Hermitian Toeplitz because the off-diagonal terms are

conjugates.

« Zis Complex Gaussian is its real and imaginary parts

are defined by a bi-variate Gaussian distribution

03/21/2012 12.714 Sec 2 Lec02

1

Examples of Stationary processes

+ White noise process: E{X;}=u and var{X;}=c? for all t.

Uncorrelated means cov{X,, T,,.}=0 for all t and ©=0.
The acvs is {

S =

o®, ift=0; _{1
0, ifr=0 ' |0

+ White noise processes are useful for forming other
processes. Uncorrelated noise samples are easy to
generate and can be used to generate many other
processes.
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Examples of White noise
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Moving average process

* A process {X;} is called a gth order moving average

process, MA(q), if it can be expressed as

‘Xl =u- BO,qgt - Bl,qgt—l - Gq,qgt—q‘

* where n and 6, , are constants (6, ,=-1 and 6, ,#0) and

{e;} is a white noise process with zero mean and

variance o,2. Expectation of {X;} is u. Assume u=0.

q9 4 2q—r
cov{X;, X, ..} = E Egj,qek,qE{gt—ngr—k} =0, zej,qgjﬂ',q =5

j=0k=0 j=0
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Moving Average Process

* No special restrictions on 6, ; to ensure stationarity.
+ Variance of process given by

q
2 2
So =0, Egj,q
j=0

+ Examples on next slide show 6, =-1 and 0, ; = +1
and -1. For these two case ry=-0,, /(1+ 62, ; ) which
becomes -1/2 and 1/2
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Examples of MA(1) processes
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As expected -1 values looks more correlated
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Autoregressive processes

+ A process {Xt} with zero mean is pth order autoregressive
process. AR(p), if it satisfies

‘Xt =P p X1+ p Xy o+ 49, X, +E,

* where ¢, p,...,0, ;#0 are constants and ¢, is a zero mean white
noise sequence with variance o.2. X; is a linear combination of
previous values plus white noise.

+ Not all choices for ¢, ,,,...,9, , lead to stationary processes.

« If AR(p) is stationary and non-deterministic, then it can expressed
as an infinite order MA process. The MA coefficients can be
determined from the AR coefficients.
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Examples of AR(2) and AR(4)

AR(2) = -0.75X(t-1)}-0.5X(t-2)+<

WWMWW«WWW o

100 400 700 800 <00 1000
AR(4) = 2.7607"X4(k+3)}-3.8106°X4(k+2)+2 65235 Xd{k+1)-0. 9238 Kd(k)+=

100

|
||]| ]||l||" | l'{ |l Tl ""'”Ill' 'U |I l Il i J“], A ’l'll i -"1” i,

llll'l ST 'I||"l

sof AN (il 'll‘ Iy m'l"' |”' 'w‘ “"‘

100 200 300 400 500 600 700 800 <00 1000

Noise generated with N(0,1)
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Other processes

+ Autoregressive moving average: ARMA(p,q) is
combination of the two processes. This combination
can provide a rich variety process characteristics.

* Harmonic process
— A process {X;} is harmonic if it can be written as
L
X, =u+ > D, cosafit+¢,)
I=1
where u, Dy, f; are real - valued constants and

¢, are independent rv's with uniform distribution [-7,7]
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Harmonic Process

+ The E{XJ=u; The covariance is given by

L
cov{X,.X,,,)= S Df cos2af;t)/2 =5,
I=1

L
so= 3D} /12=0"
[=1
+ Note that S, does not damp as t goes to infinity.
+ Since the phases are fixed once generated, any segment of a
harmonic process with enough data to determine all of the
parameters, can be used to determine the complete realization.
+ All stationary processes can be written as a harmonic process
with infinite numbers of terms. (Essential for spectral
representation)
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Harmonic Processes

+ Harmonic processes are only stationary if the phases
are independent random variables. (Assumption may
be violated by ocean tide studies).

+ The D,cos(2xft+¢,) can be separated into a Acos(2xf,)
and B;sin(2xf,). For this form to represent the same
process there are restrictions on the generation of the
A and B coefficients. Specially, random generation of
A and B will be different because the amplitude will
not be constant. The A and B formulation is more
general.

+ Harmonic processes are the justification for stationary
periodic processes
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Continuous Parameter Processes

* Processes (except harmonic ones) can be constructed
by taking (possible infinite) linear combinations of
discrete white noise (see matlab codes for this class).

+ When continuous processes are generated with
continuous white noise there is a problem: Continuous
white noise can not exist.

+ Continuous white noise requires infinite power in the
process. In practice, a Dirac-delta function provide a
useful approximation. The area under the Dirac-delta
function is the variance of the white noise. (As the
width of the Dirac-delta function goes to zero, its
amplitude must go to infinity.
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Stationary processes as Models for
Data

+ Care should taken in making conclusions based on stationarity
assumptions when this assumption maybe suspect for a data set.
+ Some common problems can corrected.
+ Linear trends: Given a process X=0+pt+Y,, stationary process
can be generated with:
— Residuals to least squares fit to line
— Using differences (mean is then estimate of ). Later we will
see that spectral properties of Y, can be determined for
spectum of Y,,4-Y,.
+ Always problem here with the lowest frequencies in Y, being lost
in fitting or differencing
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Models for data

+ Periodic signals: Again fitting can be used if
frequencies are know. (Periodic signals do not
necessarily violate stationarity so can be often
ignored)

+ Use of differences (separated by period) can also be
used. If not an exact multiple of period, then
differencing between several points can be used.

+ Some non-stationary cases can be treated by dividing
data to segments; variance changes (if known)
handled by normalizing data with standard deviation.

+ Formulation with multiple noise processes sometimes
can be used, if non-stationary ones can be removed.
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Summary

+ Today we covered:
— Stochastic Processes
— Notation
— Basic Theory
— Real-valued stationary processes
— Complex-valued stationary processes
— Discrete Parameter Stationary Processes
— Continuous parameter processes
— Use as models of data
+ Next class: Deterministic Spectral Analysis. Chapter 3 of PW
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