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Stationary Stochastic Processes!
•  Class Today:!

– Stochastic Processes!
– Notation!
– Basic Theory !
– Real-valued stationary processes!
– Complex-valued stationary processes!
– Discrete Parameter Stationary Processes!
– Continuous parameter processes!
– Use as models of data!
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Stochastic Processes!
•  A stochastic process is a family of random variables indexed by t 

where t belongs to an index set T.!
•  A stochastic process is one which a particular sample, called a 

realization, from all possible realizations, called the ensemble is 
selected.!

•  A stochastic is denoted by: !
•  The index t is often time but can be other quantities such as 

distance. !
–  If t is continuous, the process is called continuous parameter 

(or continuous time)!
–  If t is discrete, the process is called discrete parameter (or 

discrete time).!

€ 

X(t) : t ∈ T{ }
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Notation!
•  Notation to be used (and used in PW)!
•  {Xt} discrete parameter, {X(t)} continuous parameter!
•  If a range for t is not specified, then all integers for 

discrete, and all real axis for continuous!
•  Multiple stochastic processes will be given separate 

names (e.g. {Y(t)}) or an additional index e.g {Xt,j} and 
{Xt,k} or {X(t,j)} and {X(t,k)} for discrete and continuous 
parameters.!

•  Symbol Z will be reserved for complex process such 
as Zt = Xt,1 + iXt,2 and i=sqrt(-1). Xt,1 + iXt,2 are real 
valued stochastic processes. !
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Basic Theory!
•  Since a stochastic process is composed of a set of random 

variables, we can define at a specific t the cumulative probability 
distribution function (CPDF) Ft(a) = P[Xt≤a], then!

•  This called the Riemann-Stieltjes integral.  This form has the 
advantage that continuous and discrete probability distributions 
can be used depending on the continuity of the derivatives of 
Ft(a) !

•  The full stochastic process can be defined by the n-dimensional 
cumulative probability distribution function !

€ 

E{Xt} = xdFt−∞
∞∫ (x) ≡ µt

var{Xt} = (x −µt )
2dFt−∞

∞∫ (x) ≡σ t
2

€ 

Ft1,t2,t3,...,tn (a1,a2,a3,...,an ) = P[Xt1 ≤ a1,Xt2 ≤ a2,Xt3 ≤ a3....Xtn ≤ an ]
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Real Value Stationary Processes!
•  Stationary processes have properties that are 

invariant with time: Two types!
– Complete stationarity (strong/strict sense): If the 

CPDF for all n≥1 and for any t1,t2,….,tn in the index 
set, and for any τ such that t1+τ,…,tn+τ are in the 
index set!

– Second-order stationarity (weak/wide-sense/
covariance) all joint first and second moments exist 
and are the same for the conditions above (ie., 
expectation and variance are the same).!

  

€ 

Ft1,t2,,t3 (a1,a2,,an ) = Ft1+τ ,t2+τ ,,t3+τ (a1,a2,,an )
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Stationary processes!
•  Second-order stationarity: From the definition we have!

•  We define the autocovariance sequence (acvs) for a 
discrete process as!

€ 

E{Xt} ≡ µ E{Xt
2} ≡ µ'2 ⇒ var{Xt} = µ'2 −µ2 ≡σ 2

constant and independent of t.  With shift τ = t1 − t2
E{Xt1Xt2 } = E{X0Xt1−t2 }

€ 

Cov{Xt1 ,Xt2 } = E{[Xt1 −µ][Xt2 −µ]} = E{Xt1Xt2 }−µ2

sτ =Cov{Xt ,Xt+τ} =Cov{X0,Xτ}
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Stationary procsses: Continuous!
•  For a continuous process the autocovariance function (acvf) is!

•  Some Properties of acvs and acvf!
– The variance of the process is given by s0 or S(0)!
– The autocorrelation sequence (acs) and autocorrelation 

function (acf) are ρτ=st/s0 and ρ(τ)=s(τ)/s(0) (Difference in 
engineering literature).!
–  ρτ and ρ(τ) are bounded between -1 and +1.!
– Sequence {sτ} is positive semi-definite and therefore {sτ} can 

not be an arbitrary sequence even if all the correlations are 
bounded in -1 to 1. Strict limits on negative correlations.!

€ 

s(τ ) ≡ cov{X(t),X(t + τ )} = cov{X(0),X(τ )}
τ is called the lag and is the t1 − t2
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Properties of acvs!
•  The two dimensional variance-covariance matrix for a 

contiguous portion of the process is called a Toeplitz 
matrix because the elements depend only on the row 
and column difference.  Since the absolute value of 
the difference is not important, it is a symmetric 
Toeplitz matrix.!

•  For a process with a Gaussian cpdf, wide-sense 
stationarity implies strict sense stationarity because 
the cpdf is defined totally by the first and second 
moments.!
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Complex Stationary processes!
•  Complete processes are similar to real valued ones 

with some exceptions (actually all the complex 
formulas are valid for real valued ones but not visa-
versa.).!

•  The differences arise from the definition of covariance.!

•  Now s-τ=sτ* and for continuous s(-τ)=s*(τ)!

€ 

Zt = Xt ,1 + iXt ,2 E{Zt} = µ1 + iµ2 = µ

cov{Zt1 ,Zt2 } = E{[Zt1 −µ]∗[Zt2 −µ]} (* is complex conjucate)

cov{Zt ,Zt+τ} = E{[Zt −µ]∗[Zt+τ −µ]} = sτ
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Complex processes!
•  The positive semi-definite condition becomes!

•  Notice the conjugate on the covariance element !
•  For complex processes, the covariance matrix is 

Hermitian Toeplitz because the off-diagonal terms are 
conjugates.!

•  Z is Complex Gaussian is its real and imaginary parts 
are defined by a bi-variate Gaussian distribution!

€ 

var c jZt j
j=1

n
∑

# 
$ 
% 

& 
' 
( 

= st j−tk c jck
∗

k=1

n
∑

j=1

n
∑ ≥ 0
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Examples of Stationary processes!
•  White noise process: E{Xt}=µ and var{Xt}=σ2 for all t.  

Uncorrelated means cov{Xt,Tt+τ}=0 for all t and τ≠0.  
The acvs is!

•  White noise processes are useful for forming other 
processes.  Uncorrelated noise samples are easy to 
generate and can be used to generate many other 
processes.  !

€ 

sτ =
σ 2, if τ = 0;
0,  if τ ≠ 0

% 
& 
' 

ρτ =
1
0
% 
& 
' 
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Examples of White noise!
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Moving average process!
•  A process {Xt} is called a qth order moving average 

process, MA(q), if it can be expressed as!

•  where µ and θj,q are constants (θ0,q=-1 and θq,q≠0) and 
{εt} is a white noise process with zero mean and 
variance σε2.  Expectation of {Xt} is µ.  Assume µ=0.!

  

€ 

Xt = µ −θ0,qεt −θ1,qεt−1 −−θq,qεt−q

€ 

cov{Xt ,Xt+τ} = θ j,qθk ,qE{εt− jεt+τ−k}
k=0

q
∑

j=0

q
∑ =σε

2 θ j,qθ j+τ ,q ≡ sτ
j=0

q−τ
∑
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Moving Average Process!
•  No special restrictions on θj,q to ensure stationarity.!
•  Variance of process given by!

•  Examples on next slide show θ0,1 = -1 and θ1,1 = +1 
and -1.  For these two case r1= -θ1,1 /(1+ θ2

1,1 ) which 
becomes -1/2 and 1/2!€ 

s0 =σ e
2 θ j,q

2

j=0

q
∑
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Examples of MA(1) processes!

As expected -1 values looks more correlated!
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Autoregressive processes!
•  A process {Xt} with zero mean is pth order autoregressive 

process. AR(p), if it satisfies!

•  where φ1,p,…,φp,p≠0 are constants and εt is a zero mean white 
noise sequence with variance σε2. Xt is a linear combination of 
previous values plus white noise.!

•  Not all choices for φ1,p,…,φp,p lead to stationary processes.!
•  If AR(p) is stationary and non-deterministic, then it can expressed 

as an infinite order MA process. The MA coefficients can be 
determined from the AR coefficients.!

  

€ 

Xt = φ1,pXt−1 +φ2,pXt−2 ++φp,pXt−p +εt
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Examples of AR(2) and AR(4)!

Noise generated with N(0,1)!
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Other processes!
•  Autoregressive moving average: ARMA(p,q) is 

combination of the two processes.  This combination 
can provide a rich variety process characteristics.!

•  Harmonic process!
– A process {Xt} is harmonic if it can be written as!

€ 

Xt = µ + Dl cos(2πflt +φl )
l=1

L
∑

where µ, Dl , fl  are real - valued constants and
φl  are independent rv's with uniform distribution [-π,π ]
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Harmonic Process!
•  The E{Xt}=µ; The covariance is given by!

•  Note that Sτ does not damp as τ goes to infinity.!
•  Since the phases are fixed once generated, any segment of a 

harmonic process with enough data to determine all of the 
parameters, can be used to determine the complete realization.!

•  All stationary processes can be written as a harmonic process 
with infinite numbers of terms.  (Essential for spectral 
representation)!

€ 

cov{Xt ,Xt+τ ) = Dl
2 cos(2πflτ ) /2 ≡ sτ

l=1

L
∑

s0 = Dl
2 /2 ≡σ 2

l=1

L
∑
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Harmonic Processes!
•  Harmonic processes are only stationary if the phases 

are independent random variables.  (Assumption may 
be violated by ocean tide studies).!

•  The Dlcos(2πflt+φl) can be separated into a Alcos(2πft) 
and Blsin(2πft).  For this form to represent the same 
process there are restrictions on the generation of the 
A and B coefficients.  Specially, random generation of 
A and B will be different because the amplitude will 
not be constant.  The A and B formulation is more 
general.!

•  Harmonic processes are the justification for stationary 
periodic processes !
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Continuous Parameter Processes!
•  Processes (except harmonic ones) can be constructed 

by taking (possible infinite) linear combinations of 
discrete white noise (see matlab codes for this class).!

•  When continuous processes are generated with 
continuous white noise there is a problem: Continuous 
white noise can not exist.!

•  Continuous white noise requires infinite power in the 
process.  In practice, a Dirac-delta function provide a 
useful approximation.  The area under the Dirac-delta 
function is the variance of the white noise.  (As the 
width of the Dirac-delta function goes to zero, its 
amplitude must go to infinity.!
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Stationary processes as Models for 
Data!

•  Care should taken in making conclusions based on stationarity 
assumptions when this assumption maybe suspect for a data set.  !

•  Some common problems can corrected.!
•  Linear trends: Given a process Xt=α+βt+Yt, stationary process 

can be generated with:!
– Residuals to least squares fit to line !
– Using differences (mean is then estimate of β).  Later we will 

see that spectral properties of Yt can be determined for 
spectum of Yt+1-Yt.!

•  Always problem here with the lowest frequencies in Yt being lost 
in fitting or differencing!
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Models for data!
•  Periodic signals: Again fitting can be used if 

frequencies are know.  (Periodic signals do not 
necessarily violate stationarity so can be often 
ignored)!

•  Use of differences (separated by period) can also be 
used.  If not an exact multiple of period, then 
differencing between several points can be used.!

•  Some non-stationary cases can be treated by dividing 
data to segments; variance changes (if known) 
handled by normalizing data with standard deviation.!

•  Formulation with multiple noise processes sometimes 
can be used, if non-stationary ones can be removed.!
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Summary!
•  Today we covered:!

– Stochastic Processes!
– Notation!
– Basic Theory !
– Real-valued stationary processes!
– Complex-valued stationary processes!
– Discrete Parameter Stationary Processes!
– Continuous parameter processes!
– Use as models of data!

•  Next class: Deterministic Spectral Analysis. Chapter 3 of PW!


