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Introduction to Spectral Analysis!
•  Topics Today!

– Aspects of Time series analysis!
– Spectral Analysis for Simple Time Series Models!
– Non-Parametric Estimation of Spectra!
– Parametric Estimation of Spectra!
– Use of Spectral analysis!

•  Material based on Chapter 1 of Percival and Walden, 
Spectral Analysis for Physical Applications, Cambridge 
Univ. Press, pp. 583, 1993.  In  notes we use PW as 
abbreviation for this text.!

•  Web contents and Matlab scripts are available at:
http://geoweb.mit.edu/~tah/12.714  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Aspects of Time Series Analysis !
•  Time Series: A set of observations made sequentially 

in time (or space) 
•  These series are often serially correlated (i.e., one 

value is not independent of an other) and the aim of 
time series analysis is to reveal the nature of 
correlations 

•  Spectral analysis is a subset of time series analysis 
•  Goal: To develop quantitative ways to characterize 

time series analysis and explain how they differ/relate. 
•  Two approaches: Analysis in time domain and 

frequency domain. 
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Examples!
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More Examples!
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Aim of time series analysis!
•  Aim: Develop quantitative means to characterize time 

series.!
•  Two broad classes:!

– Time domain techniques!
– Frequency domain methods: Spectral Analysis!

•  Time Domain: Lagged Scatter Plots!
– Plot the values in the time series against each other 

a fixed lag between them.!
– Lag 1 plot shown next!
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Lag 1 Plots!
Notes: 
Wind Speed falls 
on a positive slope 

Willamette River is 
somewhat similar 
but more spread 
out 

The Atomic points 
have negative 
slope 

Ocean seem 
radomly scattered. 
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Autocorrelation sequence (acs)!
•  To measure the linear relationship between two 

ordered collections use the Pearson product moment 
correlation coefficient:!

  

€ 

ˆ ρ =
(yt − y )(zt − z )∑

(yt − y )2 (zt − z )2∑∑

where y  and z  are sample means.  Using yt = xt+k  and zt = xt

 ρ k =
(xt+k − x )(xt − x )t=1

N−k∑

(xt − x )2
t=1
N∑

Note ρo=1.  The ρk for a sequence of k lags is called a 
sample autocorrelation sequence  (acs).	
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ACS for examples!
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Comments on ACS!
•  River data are negatively correlated at k=6 and 

positively at k=12 (lags are in months) consistent with 
visual inspection of the time series with a clear 
seasonal cycle 

•  The atomic clock and ocean noise data are weakly 
correlated for k > 0 

•  The wind speed data remain highly correlated for 
large lags 

•  In the figure 2 methods (that generate identical results 
were used: Straight evaluation of Pearson’s formula 
and a Fourier method from Box, Jenkins, Reinsel, 
pages 30-34, 188.!
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Modeling time series!
•  The times series values can be regarded as 

realizations of corresponding random variables Xi, 
I=1,N. Time series modeling is determining the 
properties of the N random variables.!

•  The ACS values are estimates of population 
theoretical autocorrelation at each lag.!

€ 

ρk = E{(Xt −µ)(Xt+k −µ)} /σ 2

where E{.} is expectation operation,  

µ is expectation E{X} and σ 2 is variance E{(X - µ)2  }
Note: If ρk, µ, σ do not depend on time: 
Stationary process!
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Time series modeling!
•  When X follows a multivariate Gaussian distribution, the model of 

the time series is completely specified by knowledge of ρk, µ, σ. !
•  However, these parameters have some deficiencies!

– Experience needed to know what a time series will look given 
ρk, µ, σ.  

– Estimates of ρk are not necessarily reliable for lags near the 
length of the time series.  Noise in estimates increases at 
longer lags; adjacent estimates are often correlated. Lack of 
homogeneity can make ρk hard to interpret. 

– Statistical tests can be difficult 
– Even when ρk is well known, other ways of viewing data can 

provide insights. 
•  Spectral analysis provides another set of tools. 
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Comments on Lag Plots!
•  Question in ρ calculation should N/(N-k) scale result.  In general 

answer is no.  (Return to latter)!

•  There is a conflict with engineering definition of ACS (no division 
by variance).!

•  Certain types of functions can have interesting scatter plots 
(shown in next page)!

•  In Willamette River data, maybe the E{Xt} depends on time due 
to seasonal nature.  Such data can be made stationary with a 
mathematical trick.!

  

€ 

 ρ k =
(xt+k − x )(xt − x )t=1

N−k∑

(xt − x )2t=1
N∑
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St. Paul Temperature Record!
24 year 
temperature record 
with monthly 
sampling. 
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Spectral Analysis for a simple time 
series model.!

•  Some problems with acs are lessened when a 
frequency domain characterization is used!

•  Key idea of spectrum is to express the time series as 
function of periodic functions!

•  To represent a time series we will specific frequencies!

€ 

Xt = µ + [A( f )cos(2πft)+ B( f )sin(2πft)]
f
∑

  

€ 

Xt = µ + [Aj cos(2πf jt)+ Bj sin(2πf jt)]
j=1

N /2# $
∑ t =1,2,,N

z# $ is greatest integer less than or equal to z; f j = j /N 1≤ j ≤ N / 2# $
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Spectral Model!
•  We assume: E{Aj}=E{Bj}=0, E{Aj

2}=E{Bj
2}=σj

2. Notice 
that each frequency has its own variance.  Also 
assume that E{AjAk} = E{BjBk} = E{AjBk} = 0 for all j 
and k.!

•  With these assumptions: E{Xt}=µ and!

€ 

σ 2 = E{(Xt −µ)2} = σ j
2

j=1

N /2$ %
∑

ρk =
σ j
2 cos(2πf jk)j=1

N /2$ %∑

σ j
2

j=1

N /2$ %
∑

In this model we define 
the spectrum by 

€ 

S j ≡σ j
2, 1≤ j ≤ N / 2% &
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Spectral Model!
•  The equation for ρk says we can determine the acs and σ2 if we 

know the spectrum and visa-versa.!
•  Non-parametric spectrum estimation estimates the coefficients A 

and B directly (first method developed).!
•  Estimation of the spectrum from data proceeds from the 

theoretical expressions using a non-parametric approach. For N 
data, we have 2[N/2] sinusoids plus the mean, or M = 2[N/2] + 1 
quantities. ([.] is being used as the floor symbol). 

•  This is N for N odd,  and N + 1 for N even, but BN/2 is not used in 
the latter case because  
sin (2πfN/2t) = sin (πt) = 0 for all integer t. Therefore, there are M = 
N parameters in the expression no matter if N is odd or even. 
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Fourier Orthogonality!
•  In working with Fourier series (and other types of 

basis functions), advantage can be taken of the 
orthogonal nature of the sine and cosine functions 
provided the frequencies are selected appropriately.!

€ 

cos(2πfkt)cos(2πf jt) =
0 if k ≠ j

N / 2 if k = j
$ 
% 
& t=1

N
∑

sin(2πfkt)sin(2πf jt) =
0 if k ≠ j

N / 2 if k = j
$ 
% 
& t=1

N
∑

cos(2πfkt)sin(2πf jt) = 0 for all k and j.
t=1

N
∑

for f j = j /N and fk = k /N
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Non-Parametric Spectrum Estimation!
•  Due to the orthogonality of sines and cosines when 

the time series is multiplied and summed over integer 
periods, the equations for the Aj and Bj coefficients 
can be found by:!

€ 

Aj =
2
N

Xt
t=1

N
∑ cos(2πf jt)

if 1≤ j≤N/2 and,  if N is even

AN /2 =
1
N

Xt
t=1

N
∑ cos(2πfN /2t) (Only cos term here)

Bj =
2
N

Xt
t=1

N
∑ sin(2πf jt); X ≡ 1

N
Xt∑ = µ
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Spectrum Estimation!
•  The estimates of Sj are simply given by the previous 

equations evaluated with the realization of Xt denoted 
xt!

€ 

ˆ S j =
Aj

2 + Bj
2

2
 with Aj

2, Bj
2 evaluated with xt

for 1≤ j≤N/2 and if N is even

ˆ S N /2 =
1

N 2 xt cos(2πfN /2t)
t=1

N
∑
% 

& 
' 

( 

) 
* 
2
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Spectra of Examples!

RED!

Maybe Periodic at 11/28!
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Spectra Examples!

Blue Spectrum!

White noise (flat)!
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Points about non-parametric 
estimates!

•  Since the Aj and Bj coefficients are uncorrelated, the 
Sj are approximately uncorrelated (true if Aj an Bj are 
Gaussian).  This contrasts to the ρk estimated that are 
sequentially correlated.!

•  Statistical tests on Sj are easier to formulate because 
uncorrelated.!

•  Since Sj is only two-degree of freedom estimates of  
σj

2, there is variability in the spectrum.  If the 
underlying process is smooth, then the spectrum can 
be smoothed.!

•  Later we see the variance of log(Sj) is similar for all j, 
thus noise easier to interpret. !
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Parametric Estimation of Spectra!
•  In some cases, the form of spectra may be known and 

the parameters of the form estimated from the data.  
The spectrum is generated by substituting the 
parameters estimates back in the form.!

•  Example:!

€ 

S j (α,β) =
β

1+α2 − 2α cos(2πf j )

ˆ α ≈ ρ1 and since ˆ S j (α,β)∑ ≡ ˆ σ 2

ˆ β = ˆ σ 2
1

1+α2 − 2α cos(2πf j )
∑
+ 

, 
- - 

. 

/ 
0 0 

−1

This form derives from a 
“first-order 
autoregressive” process!
Wind Speed and Atomic 
clock of this form!
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Parametric estimates!
•  Two main difficulties with parametric estimates:!

– Difficult to characterize the statistical properties of 
the result spectrum.  Without making additional 
assumptions, 95% confidence interval can not be 
calculated!

– Class of functional form may not be obvious: Too 
many parameters may not be reliably estimated; too 
few parameters might not represent the spectrum 
well!

•  Can be useful in treating a smaller data set when the 
form of the parametric model can be obtained from 
other larger data sets.!
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Uses of Spectral Analysis!
•  Testing theories: Physical models may predict a 

particular spectra shape.  !
•  Investigating data: Spectral analysis allows general 

nature of time series to be inferred.!
•  Discriminating data: Allows differences between data 

to be assessed.!
•  Performing diagnostic tests: Analysis of spectrum of 

residuals after parameter fit.  One caution some of the 
noise in the data is removed in the parameter 
estimation.!

•  Assessing predictability of time series.!
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Summary!
•  Today’s class!

– Aspects of Time series analysis!
– Spectral Analysis for Simple Time Series Models!
– Non-Parametric Estimation of Spectra!
– Parametric Estimation of Spectra!
– Use of Spectral analysis!

•  Next Class!
– Stationary Stochastic processes.!


