12.714 Practical Section 02 May 02, 2012
Part 1: Analytic transforms versus FFT algorithm

(a) For a box car time domain signal with width 2*BW and amplitude BA, compare the
analytic version of the Fourier transform with the numerical calculation from the
Matlab fft function.

Partla of Matlab code generates these results. The analytic expression is given by

AnalBoxCar = 2*AB*BW*sin(2*pi*BW*f)./(2*pi*BW*f);

where AB is amplitude and 2*BW is width of boxcar and f is frequency in cycles/unit
time.

An example matlab code is below.

N = 65; dt = 2*BW/N;
BoxCar = AB*ones(1l,N);

NF = 1024; % number of points in fft

FFTBoxCar = fft(BoxCar,NF)/N;

% Now rotate the fft to shift the center of the box car
time to zero

toff = -floor(N/2)*dt;

f = [0:NF/2-1]/(dt*(NF)); % Fregeuncies in fft

FF = FFTBoxCar(1l:NF/2).*exp(-2*pi*i*f*toff);

Here we use 1024 padded FFT (the boxcar is 65-samples wide). These values can be
changed to see effect. The important step here is to rotate the fft because the boxcar
is matlab runs from 1 to 64 compared to the analytic expression which is expecting
-BW to BW of the box car.

Notes: There still seems to be a small problem in the rotation of the fft does not
generate a pure real signal, which it should have. The consequence is a small
difference, which grows with frequency. These difference most likely arise from the
finite duration of the fft. The sampling is a comb of Dirac functions but the finite
duration is a long box car whose transform will be convolved with the Dirac comb
resulting in broadened and finite duration comb.
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Fig 1a. Comparison of BoxCar analytic Fourier transform and Matlab FFT.

(b) Repeat the same analytic and numerical calculations for a triangle function.

Results here are generated in a similar process as before. The analytic expression is

AnalTriang = 4*AB*BW*(sin(2*pi*BW*f)./(2*pi*BW*£f))."2;

The matlab code in this case generates the triangle function by convolving two box

car functions. Again a time offset is applied to make the triangle function centered
on time 0.

The differences here are smaller than in Figure 1. (Zoom can be used in Matlab to
see differences).
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Fig 2: Analytic and FFT for triangle function.

Part 2: Repeating functions.

Generate a linear function (e.g, gtl = [-4:0.125:3.99]; ). Compute the power
spectrum (conj(fft).*fftj) and plot in dB.

Replicate the function so that there are two and four saw tooth functions. Compute
the power spectrum of the replicated version and compare with the original

Solution to this problem is relatively straightforward. The increasing lengths of the
time series means the frequency spacing is smaller for the longer durations and the
amplitude changes because the pattern is being repeated. Results are shown in
Figures 3 and 4.

Straightforward calculation is possible in this case. The mean value sets the power
at zero frequency. In the way the code is written, 64 samples are used in the
sawtooth, which generates exact zeros in the fft. Using 65 samples, generates small
but not zero values and so the figures above have lines shown heading to these
small values. Padding the fft with zeros (by using the second argument in the fft)



also generates interesting results by filling in the spectrum between the values
shown above.
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Figure 3: Comparison of power spectrum from 1, 2 and 4 saw tooth functions.
The amplitudes have been scaled to account for the different numbers of
terms. In the lower two parts, the line is dotted due to zeros (and this -infinity
in the log) in the power spectrum.
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Figure 4: As above but with the values all shown on one plot
Part 3: Process noise example

(a) Generate a realization of a first order Gauss Markov process (an AR(1) model) and
compute the auto-covariance sequence and the power spectral density. Compare the
computed power spectral density with the theoretical expectation. Also generate a
combined FOGM plus white noise model that has the same variance as the first model.

As a specific example: generate 10240 daily samples for a process with 100-day
correlation time with a long-term variance of 2 mm”2. For the FOGM plus noise case
assume the white noise has a standard deviation of 1 mm.

Generating time series is easy once the appropriate standard deviatons are
determined. The code below shows the procedures used. Notice here that the
random number generated is seeded so that the same series is generated with each
run. Sigepl and sigep2 below are the standard deviations of the white noise that
will generate the desired long term standard deviation for the process.

randn('seed',120) ; % Ensure we get same sequence each
time

tau = 100; % Decay time 100 days

dt = 1; ¢ Data spacing in days

beta = exp(-dt/tau);



sigtot = sqrt(2.0); % This is going to be sigma total
sigwn = 1.0 ; % White noise sigma (uncorrelated)
sigfogl = sqgrt(sigtot”2-sigwn”2) ; % Long terms standard
deviation for FOGM+WN

sigfog2 = sigtot ; % Long term sigma with just FOGM
sigepl = sqrt(sigfogl”2*(l-beta”2)); % Daily noise
driving FOGM process

sigep2 = sqrt(sigfog2”2*(l-beta”2)); % Daily noise
driving FOGM process
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Figure 5: Realization of FOGM+WN and FOGM time series. The noise driving
the FOGM is the same in both processes. The standard deviations are
FOGM_WN 1.38; and FOGM only 1.33 mm (Expectation is 1.41 mm).

The autocovariance sequences are shown in Figure 6 and computed from the PSD
functions (see original lecture 1 matlab code).
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Figure 6: Autocovariance sequences for the FOGM+WH and FOGM series

shown above.

The theoretical model for the PSD is given by

PSD1Th

(sigep2”2./((l-beta)”2 + 4*pi*fall.”2)+sigwn”2)/2;

where fall is the frequency sequence for the duration and sampling of the data.
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Figure 7: PSD for the FOGM+WN and pure FOGM process.

(b) Divide the data set into 10 segments, and compute the power spectra of each
section. Average these power spectra and compare with the theoretical estimates.

The original 10240 samples are divided into 10 blocks each of 1024 samples. The
PSD from each section are averaged and shown in figure 8. Later in the case we will
examine better ways of reducing the noise and leakage in these PSD estimates.
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Figure 8: PSD for average of 10 realizations each with 1024 samples.



