
12.221 Field Geophysics

Instructors
Tom Herring, tah@mit.edu;
Brad Hager brad@chandler.mit.edu
Web: http://www-gpsg.mit.edu/~tah/12.221

CLASS 3: Introduction to GPS

Introduction to GPS

- · Uses of GPS in this course
 - Hand held navigation. (\$200)
 - Differential "kinematic" positioning for determining heights of gravity measurements (see later why)
 - Precise static positioning for ~1 mm positioning (\$5-10K)

01/05/05 12.221 IAP Class 3 3

Coordinate Systems

- · See discussion in IEEE paper
- We will need to deal with several coordinate systems and methods of expressing coordinates.
- · System:
 - Origin at center of mass of Earth
 - Z-axis along average position of rotation axis (moves by 10 m during a year call polar motion)
 - X-axis along Greenwich meridian (convention)
- Before space-based geodesy (mid-1970's), realizations of this system could differ by several hundred meters.
- Impact of this for us will be difference between North American Datum 1927 (NAD 27) (most paper maps use this system) and NAD83/World Geodetic System 1984 (WGS84) (used by GPS but with options for other systems)

Systems we need

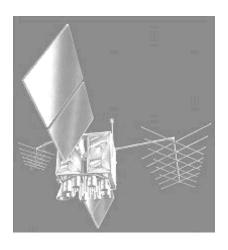
- Modern GPS results are given in the "International Terrestrial Reference System". Latest realization is ITRF2000 (Use Frame to denote realization)
- World Geodetic System WGS84 used by GPS control center (within a few meters of ITRF2000)
- However: Maps made well before this system and most US maps use North American Datum (NAD) 1927 (NAD27)
- NAD27 is approximately 200 m away from modern system

01/05/05 12.221 IAP Class 3 5

Types of coordinates

- Within a system, coordinates can be expressed in different ways:
 - Cartesian (XYZ Computational easy)
 - Geocentric latitude, longitude and radius (spherical)
 - Geodetic latitude, longitude and height above ellipsoid (ellipsoidal coordinate system).
 - Universal Transverse Mercator (UTM) coordinates. Actually ellipsoidal map projection coordinates. These have units of distance compared to latitude and longitude which are angle measurements.
 - Coordinates expressed as Northing and Easting.
 - Digital Elevation Models (DEM) are often in UTM coordinates.

GPS Original Design


- Started development in the late 1960s as NAVY/USAF project to replace Doppler positioning system
- Aim: Real-time positioning to < 10 meters, capable of being used on fast moving vehicles.
- Limit civilian ("non-authorized") users to 100 meter positioning.

01/05/05 12.221 IAP Class 3 7

Design Characteristics of GPS

- · Innovations:
 - Use multiple satellites (originally 21, now ~28)
 - All satellites transmit at same frequency
 - Signals encoded with unique "bi-phase, quadrature code" generated by pseudo-random sequence (designated by PRN, PR number): Spread-spectrum transmission.
 - Dual frequency band transmission:
 - L1 ~1.575 GHz, L2 ~1.227 GHz
 - · Corresponding wavelengths are 190 mm and 244 mm
 - Dual frequency band transmission allows the dispersive delay of the ionosphere to be removed (10-100 m)

Latest Block IIR Satellite

- •Transmission array is made up of 12 helical antenna in two rings of 43.8 cm (8 antennas) and 16,2 cm (4 antennas) radii
- •Total diameter is 87 cm
- •Solar panels lead to large solar radiation pressure effects.

•Mass: 1,110 kg

01/05/05 12.221 IAP Class 3

Measurements

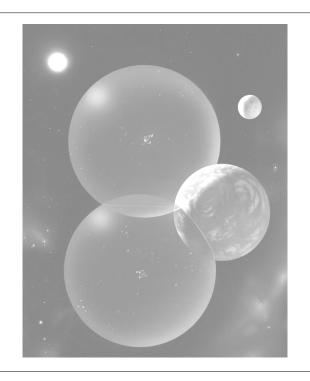
- Time difference between signal transmission from satellite and its arrival at ground station (called "pseudo-range", precise to 0.1–10 m)
- Carrier phase difference between transmitter and receiver (precise to a few millimeters) but initial values unknown (ie., measures change in range to satellites).
- In some case, the integer values of the initial phase ambiguities can be determined (bias fixing)
- All measurements relative to "clocks" in ground receiver and satellites (potentially poses problems).

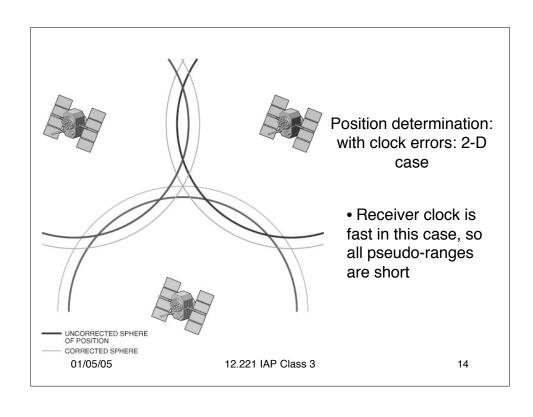
Measurement Usage

- "Spread-spectrum" transmission: Multiple satellites can be measured at same time.
- Since measurements can be made at same time, ground receiver clock error can be determined (along with position).
- Signal

 $V(t, \vec{x}) = V_o \sin[2\pi(ft - \vec{k} \cdot \vec{x}) + \pi C(t)]$ C(t) is code of zeros and ones (binary). Varies discretely at 1.023 or 10.23 MHz

01/05/05 12.221 IAP Class 3 11

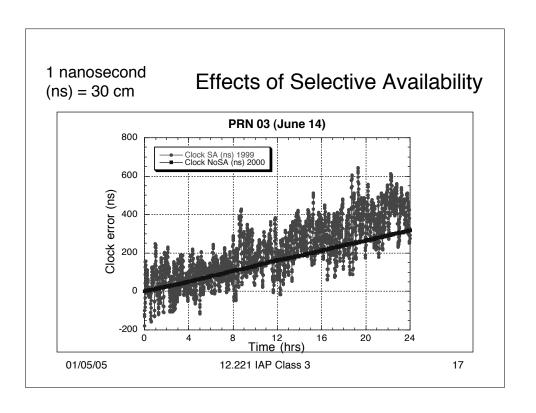

Measurement usage

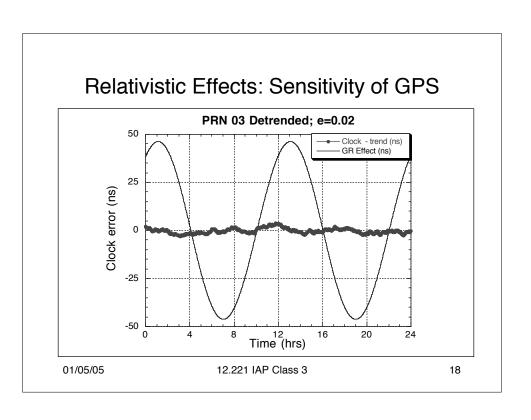

- Since the C(t) code changes the sign of the signal, satellite can be only be detected if the code is known (PRN code)
- Multiple satellites can be separated by "correlating" with different codes (only the correct code will produce a signal)
- The time delay of the code is the pseudo-range measurement.

Position
Determination
(perfect clocks)

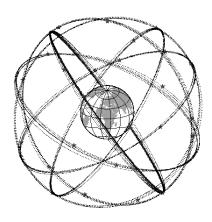
- Three satellites are needed for 3-D position with perfect clocks.
- Two satellites are OK if height is known)

01/05/05


Positioning


- For pseudo-range to be used for positioning the following quantities must known:
 - Errors in satellite clocks (use of Cesium clocks)
 - Positions of satellites
- This information is transmitted by satellite in "broadcast ephemeris". This information saved in receiver data file. We will use for in-field processing
- "Differential" positioning (DGPS) eliminates need for accurate satellite clock knowledge.

01/05/05 12.221 IAP Class 3 15


GPS Security systems

- Selective availability (SA) is no longer active but prior to 2000 "denied" civilian accuracy better than 100 m
 - Implemented by "dithering" (noising up) the satellite clock
 - Military receivers were able to undo the dithering
- Antispoofing (AS) active since 1992, adds additional encryption to P-code on L1 and L2.
- Makes civilian GPS receivers more expensive and more sensitive to radio interference
- Impact of AS and SA is small on differential GPS results

Current constellation

- Relative sizes correct (inertial space view)
- "Fuzzy" lines not due to orbit perturbations, but due to satellites being in 6-planes at 55° inclination.

19

Types of parameters estimated in GPS analysis

- GPS phase measurements at L1 and L2 from a global distribution of station used. Pseudo-range can be used but 100 times less accurate than phase.
- Giobal Analysis typically includes:
 - All site positions estimated
 - Atmospheric delay parameters estimated
 - "Real" bias parameters for each satellite global, integer values for regional site combinations (<500 km)
 - Orbital parameters for all satellites estimated (1-day orbits, 2-revolutions)
 - · 6 Integration constants
 - 3 constant radiation parameters
 - · 6 once-per-revolution radiation parameters
- For short site separation (<1000km): Orbits need not be estimated. Use International GPS Service (IGS)

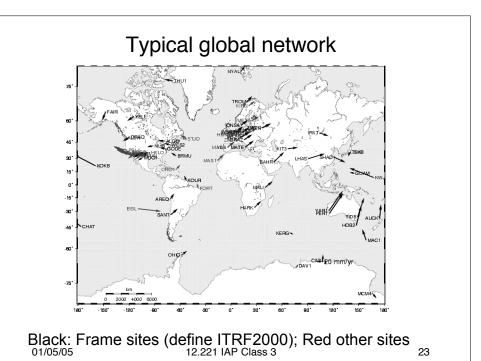
GPS Antennas (for precise positioning)


Nearly all antennas are patch antennas (conducting patch mounted in insulating ceramic).

 Rings are called chokerings (used to suppress multi-path)

01/05/05

12.221 IAP Class 3

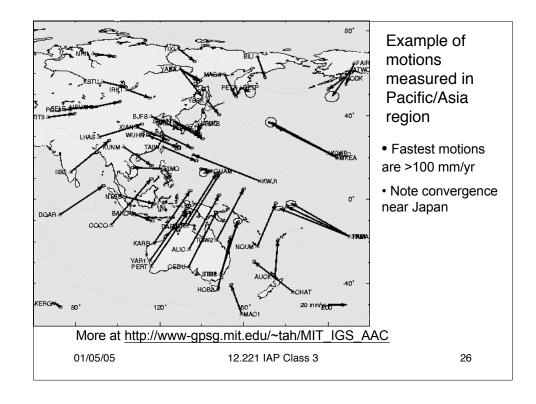

Global IGS Network (~400 stations)

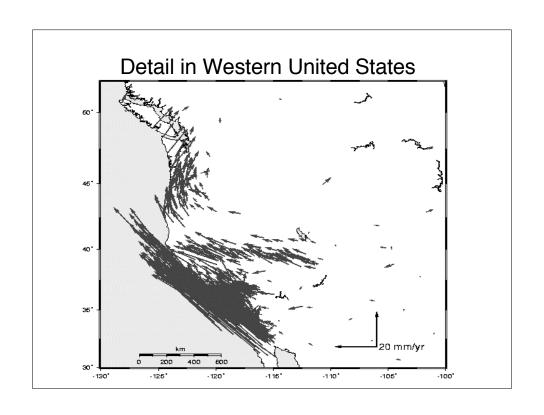
Notifi America

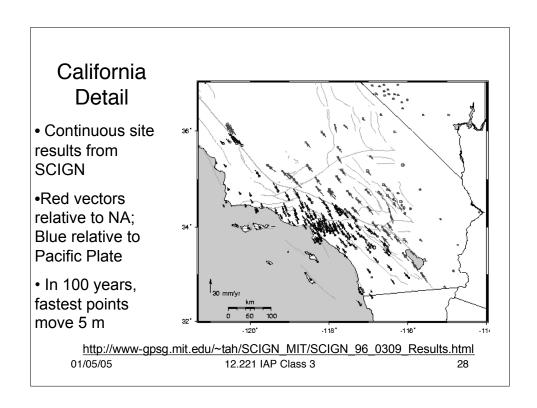
Asia-Pacific

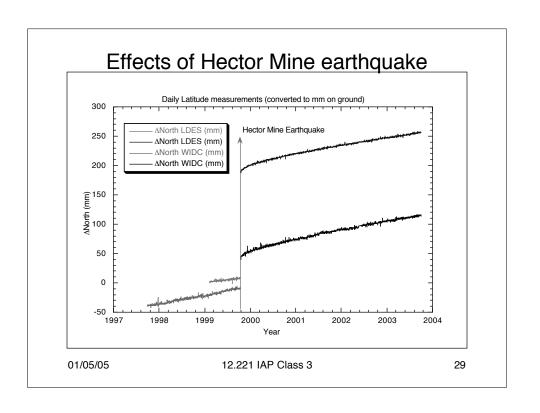
South America

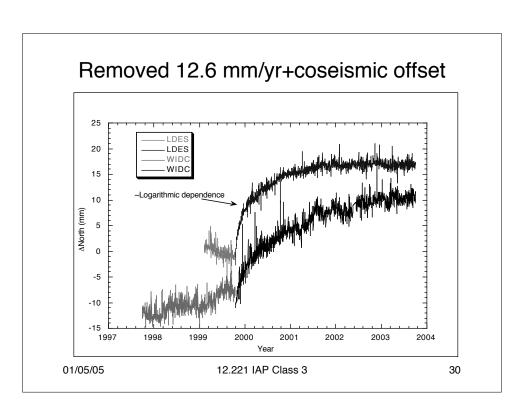
To describe the stations of t

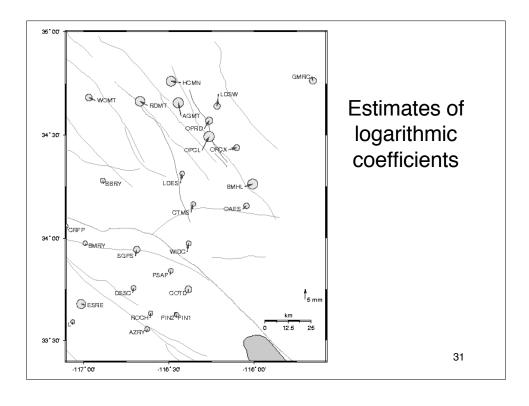



Example Results from GPS analyses


- · Examples of time series for some sites
 - Tectonic motions in the Asian region
 - Motions in California (example in more detail later)
 - Time series of motions for some sites
 - Post seismic motion after 1999 Hector Mine earthquake


Tectonic Deformation Results


- "Fixed GPS" stations operate continuously and by determining their positions each day we can monitor their motions relative to a global coordinate system
- Temporary GPS sites can be deployed on well defined marks in the Earth and the motions of these sites can be monitored (campaign GPS)
- Our field camp sites will be temporary and we will measure "relative" to continuous Southern California Integrated Network (SCIGN)
- http://www.scign.org/



12.221 Uses of GPS

- In the course we will use different GPS analysis packages:
 - Hand-held receivers: These have the software built in and you just need to select correct options.
 - TRACK: Kinematic GPS processing in the field (time series of station positions)
 - GAMIT: Full static GPS positioning (run on campus)
 - GLOBK: Used to tie our GPS results into the rest of California.
 - Manuals for GAMIT/GLOBK will be a field camp for reading.