12.221 Field Geophysics Lecture 3

1) Introduction to gravity measurement and interpretation
2) Practice with gravimeter

Reading: Chapter 2 of 12.501 lecture notes (Rob van der Hilst)

Gravity - simple physics

- Force: $\mathrm{f}=\mathrm{GmM} / \mathrm{r}^{2}$
$\mathrm{G}=6.6710^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
Vector directed along r
- Acceleration of test mass: $\mathrm{g}=\mathrm{GM} / \mathrm{r}^{2}$

$$
g=\square \cdot V
$$

Gravity - distributed density $\square(\mathrm{x}, \mathrm{y}, \mathrm{z})$

$$
\begin{aligned}
& \square^{2} V=4 \square G \square \\
& g=\square \square V
\end{aligned}
$$

- acceleration
- potential

Recall Gauss' theorem:
Measuring g places constraints on $\square(x, y, z)$

Measuring g does not constrain \square directly (sphere \Leftrightarrow point mass)
$\square(\mathrm{x}, \mathrm{y}, \mathrm{z})$ can be complicated
\Leftrightarrow simple physics, complicated interpretation

Measuring variations in g

- $\mathrm{f}=\mathrm{mg}=\mathrm{ku}$
- $\mathrm{g} \sim 9.8 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{g} \sim 980 \mathrm{~cm} / \mathrm{s}^{2}$ (980 gals Galileo)
$\square \square \mathrm{g} \sim 1 \mathrm{mgal}\left(10^{-6}\right)$

- Need good instrument, good theory!

CA-NV border, topography (meters) and locations of gravity measurements

What causes these variations?

Spinning Earth -> centrifugal force, equatorial bulge centrifugal force $=>$ less g at equator, no effect at poles equatorial bulge (\sim elliptical)
more mass near equator $=>\mathrm{g}$ increases r larger at equator $=>\mathrm{g}$ decreases

Dependence of g on latitude (\square)
$g(\square)=978032\left(1+0.0052789 \sin ^{2} \square-0.00000235 \sin ^{4} \square\right) \mathrm{mgal}$
Elevation change $\mathrm{r}->\mathrm{r}+\mathrm{h}=>\mathrm{g}$ decreases ("free air" effect)
Free air correction:
$\mathrm{g}(\mathrm{r}+\mathrm{h})=\mathrm{g}(\mathrm{r})+(\mathrm{dg} / \mathrm{dr}) \mathrm{h}$
$\mathrm{dg} / \mathrm{dr}=-2 \mathrm{~g} / \mathrm{r}=-0.307 \mathrm{mgal} / \mathrm{m}$

Gravity anomalies

In general:

$$
\square \mathrm{g}=\mathrm{g}_{\text {observed }}-\mathrm{g}_{\text {theory }}
$$

Free Air theory:

$$
\mathrm{g}_{\text {Free Air }}=\mathrm{g}(\square, \mathrm{~h})=\mathrm{g}(\square)-0.307 \mathrm{~h}
$$

Free air anomaly:

$$
\square g_{\text {faa }}=g_{\text {observed }}-g_{\text {free Air }}
$$

Bouguer gravity anomaly
$\mathrm{g}_{\text {Bouguer }}=\mathrm{g}_{\text {Free Air }}+2 \square \square \mathrm{Gh}+$ terrain;
\square for $\square=2.67,2 \square \square G=0.112 \mathrm{mgal} / \mathrm{m}$

Fig. 3-2. Reduction of gravity values to the geoid. Inset shows typical zone chart used to obtain topographic corrections superimposed over contour map of area. Station is at elevation of $1,050 \mathrm{ft}$. Average elevation of zone $12-\mathrm{D}$, for example, is $1,020 \mathrm{ft}$. Hence topographic correction for this zone is 30 times the constant for the zone.

Isostacy: Mass in each column assumed to be equal

Tides?

www.astro.oma.be/SEISMO/TSOFT/tsoft.html

Step in basement topography
$\mathrm{g}=2 \mathrm{G}(\mathrm{\square}] \mathrm{t}\left[\mathrm{\square} / 2+\tan ^{-1}(\mathrm{x} / \mathrm{d})\right]$

How big a step makes 0.1 mgal?

CA-NV border, topography and gravity (milligal)

Example "real-world" problems:

- Are the mountains isostatically compensated?
- How deep is basin fill in Mesquite basin?
- How steep is the basin boundary?
- Is Table Mountain a plug or a flow?
- Is Black Butte autochthonous?
- ?

Computation of terrain \& root using DEM - a new solution to a classic problem
 New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra

See http://www.geo-online.org/manuscript/singh99063.pdf for Matlab scripts for carrying out calculations

Gravity data: www.scec.org; on web page

```
# # Southern California Gravity Data (point measurements)
#
# Contributed to the Southern California Earthquake Center by
    Dr. Shawn Biehler of University of California at Riverside
    on December 14, 1998.
# Notes:
    0) Stations name used by Shawn Biehler
    1) Latitude and longitude were given to 1/100 minute. Here they are given in
        decimal degrees.
    2) Elevation is given in meters above sea level. Original was in feet. The
        column 'E' denotes the method of determining elevation:
            T => orginal in tenths of feet (method unspeficied)
            M => map contour (accuracy 1 foot)
            B => bench mark (acurracy 1 foot)
            U => useful (accuracy and method unspecified)
    3) Raw gravity - 978000.00 mgals (original accuracy 0.01 mgals)
    4) Predicted gravity - 978000.00 mgals, from XxXXX
    5) inT -> inner terraine correction, 0 - 1km box.
        outT -> outer terrane correction, 1 - 20 km box.
        T -> method of inner terrane correction.
    6) FAA - Free Air Anomaly (mgals) (original accuracy 0.01 mgals).
    7) BOUG -Bouger Anomaly (mgals) (original accuracy 0.01 mgals)
    8) map - quadrangle map location of stations - first 3 letters denote map,
        digits indicate site marked on map.
# stat lat long elev E Raw g Predg inT outT T faa boug map #
```



```
RO2048 34.96667 -119.44000 848.84 T T 1498.36 1742.72 
RO2020 34.95800 -119.43800 922.29 T 1485.64 1741.98 0.32 1.07 G 28.27 826.49 BLC_10
```

 \(\#\)
 $\#$

Homework:

1) Gravimeter practice
2) Gravimeter problem set
3) Calculate expected dial reading at field camp
4) Get tidal corrections (1 person)
5) Maps for Vidal quadrangle and vicinity:

Topography (DEM)
Observed gravity
Free air gravity
Bouguer gravity
Isostatic gravity

