





# Generating velocity solutions with globk

T. A. Herring<sup>1</sup> M. A. Floyd<sup>1</sup> M. Perry<sup>2</sup> <sup>1</sup>Massachusetts Institute of Technology, Cambridge, MA, USA <sup>2</sup>University of Montana, Missoula, MT, USA

GPS Data Processing and Analysis with GAMIT/GLOBK and track Hotel Soluxe, Bishkek, Kyrgyzstan 2–7 July 2018

http://geoweb.mit.edu/~floyd/courses/gg/201807\_Bishkek/

Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)

#### Overview

- Basics of "velocity" solutions
  - Invoked with "apr\_neu all xx xx xx <NEU velocity sigmas>"
- Strategies for setting up solutions (they can take a long time to run)
- Strategies for speeding up solutions.
- Methods for "cleaning up" potential problems
- Different reference frame realizations
- Some examples.
- These solutions involve making decisions about how to treat data and the type of solution to be created lots of decisions

#### GLOBK velocity solutions

- The aim of these solutions is to combine many years of data to generate position, velocity, offset, and postseismic parameter estimates. Not uncommon to have 10000 parameters in these solutions.
- Input requirements for these solutions:
  - a priori coordinate and velocity file. Used as a check on positions in daily solutions (for editing of bad solutions) and adjustments are a priori values (a priori sigmas are for these values)
  - Earthquake file which specifies when earthquakes, discontinuities, and misnamed stations affect solution. Critical that this file correctly describe data.
  - Process noise parameters for each station. Critical for generating realistic standard deviations for the velocity estimates (sh\_gen\_stats).

#### Velocity solution strategies

- In general careful setup (i.e., correct apriori coordinate, earthquake file and process noise files) is needed since each run that corrects a problem can take several days. Incorrect solutions may not complete correctly and results may be subtly wrong.
- General strategy for iteratively generating velocity solution:
  - Define a core-set of sites (usually 20-200 sites) where the solution runs quickly. Test files on this solutions and use the coordinate/velocity estimates to form the reference frame for time series generation.
  - Time series using these reference frame sites and then test (RMS scatter, discontinuity tests) to form a more complete earthquake and apriori coordinate/velocity files.
  - Steps above are repeated, usually increasing number of stations until solution is complete. As new stations are added missed discontinuities and bad process noise models can cause problems.
- Aim here is make sure that when a large solution is run (maybe several days of CPU time) that the run completes successfully.

#### Before velocity runs

- Surveys may be combined into one solution per survey
- No need to re-run glred again to see long-term time series
- Multiple ".org"-files may be read by tssum or sh\_plot\_pos
  - tssum ts\_pos mit.final\_igb08 -R survey1\_comb.org survey2\_comb.org
    ...
    - ts\_pos is the name of a directory for the .pos files. (. can be used)
  - sh\_plot\_pos -f survey1\_comb.org survey2\_comb.org -k ...

## Example: Long-term time series for survey sites







#### Excluding outliers or segments of data

 Create "rename" file records and add to globk command file's "eq\_file" option, e.g.

| rename | PTRB | PTRB_ | XPS | h1407 | 080 | 610 | _nb | o4a |      |    |    |    |    |
|--------|------|-------|-----|-------|-----|-----|-----|-----|------|----|----|----|----|
| rename | PTRB | PTRB_ | XPS | 2014  | 07  | 07  | 18  | 00  | 2014 | 07 | 80 | 18 | 30 |
| rename | ABCD | ABCD_ | XCL | 2013  | 07  | 80  | 00  | 00  |      |    |    |    |    |

- "XPS" will not exclude data from glred (so still visible in time series) but will exclude data from globk (combination or velocity solution)
- "XCL" will exclude data from all glred or globk runs

#### Runglobk

- Create new ".gdl"-file with *combined* binary h-files, e.g. from vsoln/, assuming standard directory hierarchy
  - •ls ../\*/gsoln/\*.GLX > vsoln.glx.gdl
- Optionally run glist to see size of solution
  - Recommended to prevent problems during long globk run
  - glist can read earthquake file and globk use site type commands. (Useful if a globk solution seems to be missing or has extra sites.)
- Run globk
  - This may take many hours for very large/long velocity solutions
  - Use tsfit with earthquake file to generate a priori site coordinates. Be careful if ~/gg/tables/itrf08\_xxx.apr files also used because some site names permutations may have inconsistent coordinates (use unify\_apr to be safe)

#### glorg for different reference frames

- No need to re-run globk every time you want
- glorg is usually called from globk command file ("org\_cmd" option) but glorg may be run separately
- globk 6 globk\_vel.prt globk\_vel.log globk\_vel.gdl globk\_vel.cmd
- glorg globk\_vel\_noam.org ERAS:... glorg\_vel.cmd vel.com
- Must have saved the ".com"-file!
  - e.g. "com\_file @.com"
  - Do not use "del\_scra yes" in globk command file
  - "apr\_neu" must be loosely constrained ("apr\_rot" and "apr\_tran" will also need to be used for sestbl. "BASELINE" experiment solutions).

#### Use of equates

- With earthquakes and discontinuities, there can be many site names for the same physically location:
  - Equate commands in glorg allow the velocity adjustments at these sites to be made the same (or constrained to be the same within a specified sigma)
  - "eq\_dist" allows site separate by distance to equated (and constrained in latest glorg).
  - "eq\_4char" equates sites with same 4-character name (useful to stop equates at sites that share antennas).
  - Chi-squared increments of equates allows assessment of equates (use "un\_equate" for large chi-squared values)
  - Use "FIXA" option to make a priori the same for equated sites (better to use consistent a priori file).

#### Uses of sh\_gen\_stats

- Velocity solutions are often iterative:
  - Generate time series using some reference frame sites (IGb08 sites initially for example).
  - Fit to the time series (tsfit) to:
    - Find outliers, nature of earthquakes (log needed?), discontinuities
    - Self consistent a priori file.
    - Used FOGMEx model (realistic sigma) to get process noise model and list of lowcorrelated noise reference frame sites). Use "stabrad" option for dense networks
  - Run globk velocity solution to refine reference frame site coordinates and velocities
  - Re-generate time series and repeat.

Some comparisons: Approach

- •Use sh\_exglk -f <soln.org> -vel <soln.vel> -rmdup to extract velocity estimates (rmdup removes equated sites with the same estimates)
- Program velrot allows fields to be compared (change frames and merge fields as well). For example:

velrot solna.vel nam08 solnb.vel IGS08 '' '' '' N compares to solutions directly (use "RT" instead of "N" to allow rotation and translation rates). Use grep '^S ' to get statistics.

#### **Comparisons:** Decimation

### Decimation: Different days of week (1996-2015 solution, small subset of sites):

| Un-aligned fields                                         |                     |                    |       |  |  |  |  |  |  |
|-----------------------------------------------------------|---------------------|--------------------|-------|--|--|--|--|--|--|
| compare 1 NMT_vel_150418_day1.vel NMT_vel_150418_day3.vel |                     |                    |       |  |  |  |  |  |  |
| S Component North #                                       | 75 WMean -0.00 WRMS | 6 0.04 mm/yr, NRMS | 0.198 |  |  |  |  |  |  |
| S Component East #                                        | 75 WMean -0.02 WRMS | 6 0.04 mm/yr, NRMS | 0.203 |  |  |  |  |  |  |
| S Component Up #                                          | 75 WMean 0.03 WRMS  | S 0.16 mm/yr, NRMS | 0.180 |  |  |  |  |  |  |
| S Component Horz #                                        | 75 WMean -0.01 WRMS | 5 0.04 mm/yr, NRMS | 0.200 |  |  |  |  |  |  |
| compare 2 NMT_vel_150418_day1.vel NMT_vel_150418_day5.vel |                     |                    |       |  |  |  |  |  |  |
| S Component North #                                       | 74 WMean -0.01 WRMS | 5 0.04 mm/yr, NRMS | 0.207 |  |  |  |  |  |  |
| S Component East #                                        | 74 WMean -0.02 WRMS | 6 0.05 mm/yr, NRMS | 0.225 |  |  |  |  |  |  |
| S Component Up #                                          | 74 WMean 0.04 WRMS  | 6 0.19 mm/yr, NRMS | 0.212 |  |  |  |  |  |  |
| S Component Horz #                                        | 74 WMean -0.01 WRMS | 5 0.04 mm/yr, NRMS | 0.217 |  |  |  |  |  |  |
| compare 3 NMT_vel_150418_day3.vel NMT_vel_150418_day5.vel |                     |                    |       |  |  |  |  |  |  |
| S Component North #                                       | 76 WMean -0.01 WRMS | 5 0.03 mm/yr, NRMS | 0.177 |  |  |  |  |  |  |
| S Component East #                                        | 76 WMean -0.01 WRMS | 5 0.03 mm/yr, NRMS | 0.161 |  |  |  |  |  |  |
| S Component Up #                                          | 76 WMean 0.01 WRMS  | 5 0.13 mm/yr, NRMS | 0.142 |  |  |  |  |  |  |
| S Component Horz #                                        | 76 WMean -0.01 WRMS | 5 0.03 mm/yr, NRMS | 0.169 |  |  |  |  |  |  |

#### Comparison: Time series vs GLOBK

#### • PBO Combined analyses:

| Un-aligned fields (no rotation and translation).                 |   |      |       |       |      |      |        |      |       |
|------------------------------------------------------------------|---|------|-------|-------|------|------|--------|------|-------|
| compare 1 PBO_vel_150425.vel PBO_vel_150425KF.vel                |   |      |       |       |      |      |        |      |       |
| S Component North                                                | # | 2105 | WMean | -0.01 | WRMS | 0.12 | mm/yr, | NRMS | 0.925 |
| S Component East                                                 | # | 2105 | WMean | -0.00 | WRMS | 0.13 | mm/yr, | NRMS | 0.934 |
| S Component Up                                                   | # | 2105 | WMean | 0.02  | WRMS | 0.31 | mm/yr, | NRMS | 0.871 |
| S Component Horz                                                 | # | 2105 | WMean | -0.01 | WRMS | 0.12 | mm/yr, | NRMS | 0.929 |
| <pre>compare 4 PBO_vel_150425.vel PBO_vel_150425_NAM08.vel</pre> |   |      |       |       |      |      |        |      |       |
| S Component North                                                | # | 1972 | WMean | 0.03  | WRMS | 0.13 | mm/yr, | NRMS | 0.965 |
| S Component East                                                 | # | 1972 | WMean | 0.02  | WRMS | 0.15 | mm/yr, | NRMS | 1.049 |
| S Component Up                                                   | # | 1972 | WMean | -0.07 | WRMS | 0.41 | mm/yr, | NRMS | 0.943 |
| S Component Horz                                                 | # | 1972 | WMean | 0.02  | WRMS | 0.14 | mm/yr, | NRMS | 1.008 |
| compare 7 PBO_vel_150425KF.vel PBO_vel_150425_NAM08.vel          |   |      |       |       |      |      |        |      |       |
| S Component North                                                | # | 1969 | WMean | 0.04  | WRMS | 0.16 | mm/yr, | NRMS | 0.952 |
| S Component East                                                 | # | 1969 | WMean | 0.02  | WRMS | 0.17 | mm/yr, | NRMS | 0.967 |
| S Component Up                                                   | # | 1969 | WMean | -0.08 | WRMS | 0.44 | mm/yr, | NRMS | 0.935 |
| S Component Horz                                                 | # | 1969 | WMean | 0.03  | WRMS | 0.16 | mm/yr, | NRMS | 0.959 |
| PBO vel 150425.vel: tsfit solution to time series                |   |      |       |       |      |      |        |      |       |

PBO\_vel\_150425KF.vel: tsfit Kalman filter solution to timeseries

PBO\_vel\_150425\_NAM08.vel: GLOBK combined velocity solution (NMT+CWU), decimated 7 days, 28-subnet combination. Reference frame realization to NAM08 frame sites (~600)

See Herring et al., Reviews of Geophysics, 2016 for more detailed comparisons.

#### Final comments

- Practice large solutions with decimated data sets and small networks (run time increased cubically with number of stations)
- Make sure your a priori coordinates files are consistent (especially with equates)
  - Use the out\_aprf command in tsfit to generate an apriori which is consistent with your timeseries estimates.