Working with command-line systems and GAMIT/GLOBK

T. A. Herring1 M. A. Floyd1 M. Perry2

1Massachusetts Institute of Technology, Cambridge, MA, USA
2University of Montana, Missoula, MT, USA

GPS Data Processing and Analysis with GAMIT/GLOBK and track
Hotel Soluxe, Bishkek, Kyrgyzstan
2–7 July 2018

http://geoweb.mit.edu/~floyd/courses/gg/201807_Bishkek/

Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)
Introduction to command-line computing

• Directory structure and navigation
• Using a command line
• Commands to know
• Introduction to shell scripts
Directory structure and navigation
Directory structures

• One must be familiar with the layout of files and directories (or “folders”)

• Once one has a mental “map” of the directory structure, navigating between directories and finding files is easier

• Think of it as a filing cabinet or family tree
Directory structures

• Top-level ("root") directory (e.g. "/" on Unix, "C:\" on Windows, etc.)

• User’s current working directory is referred to by the shorthand "." [dot]

• The "parent" directory is one level above the current working directory in the hierarchy

• Parent directory is referred to by the shorthand ".." [double dot]
Changing directory

Once user knows where they are with “mental map” of directory structure, move around. We can move up or down the hierarchy but not sideways.

- `cd /`
 - Takes user to top-level (“root”) directory
- `cd 1b`
 - Takes user to “1b” directory in first level (move down hierarchy)
- `cd 2c`
 - Takes user to “2c” directory in second level, below “1b” (move down hierarchy)
- `cd 2d`
 - Unknown directory. Why?
 - User attempting to move sideways but “2c” not connected directly to “2d”.

2018/07/02

Command-line systems and GAMIT/GLOBK

5
Absolute paths

To move back up the hierarchy to “2d”, one may explicitly start from the top level, e.g.
- `cd /`
- `cd 1c`
- `cd 2d`

or, combined, simply
- `cd /1c/2d`
 - Directories are separated by forward slashes
Relative paths

Or:

- Move back up to “1b”
 - `cd ..`
- Move back up to “/”
 - `cd ..`
- Move down to “1c”
 - `cd 1c`
- Move down to “2d”
 - `cd 2d`
- Or, combined, simply:
 - `cd ../../1c/2d`
Using a command line
Using a command line

- Basic syntax is:
 `<command> <options> <argument(s)>`
- `<command>` is the program to run, including directory if not included in PATH environment variable (more in a couple of slides...)
- `<options>` are usually prepended by a dash (e.g. –a)
- `<argument(s)>` are usually input or output files to work on
- Commands may or may not have options or expect arguments
Basic commands

• **cd**
 • Change directory, for navigating the directory structure

• **pwd**
 • Print working directory, to know where you are

• **ls**
 • List directories and files in current working directory ("."") or directory given after command

• Use the “tab” key to auto-complete options
Environment variables

• A computer must be told information in order to work the way you expect

• Many important settings are kept in “environment variables”
 • $HOME = user’s home directory
 • $PATH = list of directories containing programs
 • $SHELL = user’s command shell

• `printenv`
 • Prints information on environment variables
Local variables

• To make life easier, one may also set local variables, which may be referred back to at any time
• Useful if one finds the need to write the same thing many times
• sh/bash:
 • var='Hello'
 • Instead of writing “Hello”, any reference to $var will be equivalent to “Hello”
 • var=(Hello Goodbye)
 • Any reference to ${var[0]} will be equivalent to “Hello” and ${var[1]} to “Goodbye”
• csh/tcsh:
 • set var = ‘Hello’
 • Instead of writing “Hello”, any reference to $var will be equivalent to “Hello”
 • set var = (Hello Goodbye)
 • Any reference to $var[1] will be equivalent to “Hello” and $var[2] to “Goodbye”
Commands to know
Everyday commands

- awk
- grep
- sed
- sort
- paste/join
- tr
- echo/cat
awk

Powerful formatted read/write utility, e.g.

- awk `{print $1,$2,$3}' <file>
 - Prints first, second and third white-spaced columns ("fields") from each line of <file>
- awk -v n=3 -v FS=',' '{print $NF/n}' <csv-file>
 - Prints the last comma-separated field divided by 3 from each line of <csv-file>
- awk `BEGIN {sum=0}; {sum=sum+$1}; END {printf "%.1f\n",sum/NR}' <file>
 - Calculate mean of first field: sums first field on each line then divides by number of lines ("records")
Pattern-matching command ("**general regular expression**")

- **grep ‘hello’ <file>**
 - Prints all lines from <file> with occurrence of “hello” in them

- **grep –ci ‘^POS S’ <file>**
 - Prints the number (“–c”) of lines that begin (“^”) with “POS S” in either upper- or lower-case letters (“–i”) in <file>

- **grep ‘^ .* P$’ <file>**
 - Print all lines in <file> that begin (“^”) with a space, followed by any number of any characters (“.*”), and end (“$”) with a space followed by P
sed

Basic text editor

- **sed ‘s/ //g’ <file>**
 - Substitute (“s”) all (“g”) instances of a single whitespace with nothing (i.e. delete all whitespace)

- **sed ‘/^ *$/d; s/hello/goodbye/1’ <file>**
 - Delete (“d”) all empty lines and substitute the first instance of “hello” with “goodbye” on each line of <file>
sort

Sorts records

- `sort <file>`
 - Outputs basic alpha-numerically ordered `<file>`

- `sort -u <file>`
 - Same as above but uniquely sorted (i.e. removes duplicate records)

- `sort -g -k 3 <file>`
 - General numeric ordering based on third field of `<file>`

- `sort -u -k 2.1,2.4 <file>`
 - Sort based on first character of second field to fourth character of second field and use this as the basis for the uniqueness test
Basic translation

• `tr '[:upper:]' '[:lower:]'`
 * Transposes all upper-case letters to lower-case

• `tr -d '\r'`
 * Deletes all carriage return ("CR") characters (useful for changing a file’s line ending from DOS to UNIX format)
echo/cat

Echoes the argument
• `echo 'Help!'`
 • Prints “Help!”
• `cat <file>`
 • Reads out entirety of `<file>`
• `cat << END
Help!
END`
 • Same as “`echo ‘Help!’’”
Redirection

• The output from one command may be written to a file...
 • “>” to *overwrite* an existing file
 • “>>” to *append* to an existing file
 • `sort [file] > [sorted file]`

• ...or “piped” to another command, effectively forming the second command’s input
 • “|”
 • `grep ‘^.* P$’ [file] | sort > [grep’d and sorted file]`
Shorthands

• Top-level ("root") directory = "/", e.g.
 • cd /

• Your home directory = "~" or "$HOME", e.g.
 • ls ~

• “Links” or “shortcuts” may be created, e.g.
 • ln -s /home/user/gg/10.70 ~/gg

• This creates a link in the user’s home directory called “gg” that points to the directory /home/user/gg/10.70
 • Rather than “cd /home/user/gg/10.70”, one can get to the same place simply with “cd ~/gg”
 • (This is used in GAMIT/GLOBK scripts and must remain in place!)
Useful commands

- **du**
 - Disk usage: useful if you want to know how much space your (or others’) directories are taking up

- **df**
 - Disk free space: useful if you want to know how much disk space is used and free

- **top**
 - Table Of Processes: useful if you want a real-time overview of processes that are running

- **ps**
 - List processes: useful if you want to see what processes are running and their process numbers, commands, etc.
Introduction to shell scripts
What is a script?

• Scripts contain a series of commands written in one file and prepended by a “hash-bang”
 • `#!/bin/sh` for original Bourne Shell (usually the same as bash on modern systems)
 • `#!/bin/bash` for Bourne Again Shell
 • `#!/bin/csh` for C Shell (usually the same as tcsh on modern systems)
 • `#!/bin/tcsh` for TENEX C Shell

• The script may then be executed to run all of the commands in sequence as written

• Most scripts in GAMIT/GLOBK are written in csh or tcsh; many newer scripts are written in bash
 • Must have both csh and tcsh installed to run GAMIT/GLOBK scripts
 • bash usually installed by default on current Linux distributions
#!/bin/bash

echo -n 'The ISO date is: '

date '+%Y-%m-%dT%H:%M:%S%Z'

echo -n 'The mean of all numbers between 1 and 10 is: '

echo 1 10 | awk 'BEGIN {sum=0; n=0}; {for (i=$1; i<=$2; i++) {sum=sum+i; n++}}; END {print sum/n}'

echo 'Goodbye!'
Installing GAMIT/GLOBK
Sources of prerequisite information

http://geoweb.mit.edu/gg/pre/

ftp://guest@chandler.mit.edu/updates/documentation/GAMIT_prerequisites.pdf

http://geoweb.mit.edu/~floyd/computing/mac/gfortran/

http://geoweb.mit.edu/~floyd/computing/mac/gv/
Separation of tasks

• Source code directory
• Installation directory
• Processing directory
Source code directory (optional)
Source code directory

• Users may wish to keep a local copy of source code
 • As backup in case of problems during installation
 • If unable to reconnect to the source code repository (ftp://chandler.mit.edu)

• If you wish to do this, keep it separate from where you intend to install GAMIT/GLOBK, e.g.
 • ~/src/gg/10.70
 • ~/Programs/src/gg/10.70
Master installation directory
Master installation directory

• Choose a suitable directory for installing the software
 • Suggested place in home directory, e.g. ~/src/gg, ~/Programs/gg, etc. (for example, I install GG version 10.70 in /Users/Mike/Programs/gg/10.70)
 • Alternative may be your /usr/local directory, e.g. /usr/local/gg/10.70 but you must have administrator permissions
 • Take great care not to mix source versions, e.g. 10.61 versus 10.70

• Change to this directory to download (or copy) the source code

• This will be the directory that is ultimately linked from your home directory (~/gg)
Downloading source via FTP
FTP server

- chandler.mit.edu
 - username: guest
 - password: [changeable]
- Use FTP client, such as `ftp` or `ncftp`
- Alternatively, use internet browser
 - `ftp://guest@chandler.mit.edu`
Source code

• Change directory to updates/source/

• Need *at least:*
 • com
 • gamit
 • help
 • kf
 • libraries
 • tables
 • incremental_updates (if any)

• Also download install_software

• Depending on your processing strategy, may also need to download grids (e.g. ocean-tide loading, atmospheric loading grids, etc.) from ftp://everest.mit.edu/pub/GRIDS/
Updates!

- Incremental updates are made available approximately every month, so please check at least
 - Earth orientation parameters (pole.* and ut1.*; or sh_update_eop)
 - SVN-PRN translation tables (svnav.dat)
 - Differential code biases (dcb.dat)
 - Leap seconds (leap.sec)
 - Loading grids (ftp://everest.mit.edu/pub/GRIDS/)

- Example: 2016-12-31T23:59:60Z leap second
Documentation

• Top-level “README” file at
 ftp://guest@chandler.mit.edu/updates/README

• Change directory to updates/documentation/
 • GAMIT/GLOBK prerequisites in **GAMIT_prerequisites.pdf**
 http://geoweb.mit.edu/gg/pre/
 ftp://guest@chandler.mit.edu/updates/documentation/GAMIT_prerequisites.pdf
 • Introductory GPS material in **Intro_GG.pdf**
 http://geoweb.mit.edu/gg/Intro_GG.pdf
 ftp://guest@chandler.mit.edu/updates/documentation/Intro_GG.pdf
 • GAMIT reference manual in **GAMIT_Ref.pdf**
 http://geoweb.mit.edu/gg/GAMIT_Ref.pdf
 ftp://guest@chandler.mit.edu/updates/documentation/GAMIT_Ref.pdf
 • GLOBK reference manual in **GLOBK_Ref.pdf**
 http://geoweb.mit.edu/gg/GLOBK_Ref.pdf
 ftp://guest@chandler.mit.edu/updates/documentation/GLOBK_Ref.pdf
Compiling GAMIT/GLOBK
Required tools

Depending on your system, a number of programs may need to be added. One needs:

• A Fortran code compiler (e.g. gfortran)
• A C code compiler (e.g. gcc)
• X11 libraries and headers, specifically:
 • libX11.a, libX11.so, libX11.dylib, libX11.la or libX11.dll.a (depending on your system)
 • Xlib.h
• Linux
 • Be sure a C-shell (csh and tcsh) is installed (this is not the case by default with Ubuntu, for instance)
 • X11 libraries and headers may also need to be installed
• Mac
 • Have an Apple ID and download the latest “Command Line Tools for Xcode” (Mac OS X 10.7.3 or later) or “Xcode” (prior to Mac OS X 10.7.3) appropriate to your system from https://developer.apple.com/download/more/
 • X11 was replaced by XQuartz (https://www.xquartz.org/) for Mac OS X 10.8 (Mountain Lion) and later
• Windows
 • Ubuntu on VirtualBox or VMWare virtual machine (or Bash on Ubuntu on Windows on recent versions of Windows 10):
 sudo apt install gfortran make libx11-devel csh tcsh bc
 • Cygwin: Devel/make; Math/bc; Shells/tcsh; X11/libX11 (or X11/xinit)
Notes on known problems

• Very new gfortran releases, especially those with a version number ending in 0 (e.g. 4.9.0), sometimes are buggy and produce compilation problems
 • If this is the case, try compiling a program using only the “-O3” flag or revert to an older, stable version of gfortran

• Currently running gfortran 6.3.0 on laptop with macOS 10.13 (High Sierra) and 5.4.0 on MIT computers with Ubuntu Linux
Running `install_software`

From the master installation directory, where the source tar-files and `install_software` should be copied

- Run `./install_software`
- As you pass through the installation process, *please read the questions*, e.g.
 - Searching directories set in libraries/Makefile.config for X11 installation
 Verified these paths to X11 libs and includes
 `X11LIBPATH`:
 `X11INCPATH`:
 Are these paths complete and correct for your system? (y/n)
- If they are not correct, say “n” then `install_software` will search or exit and one can then edit libraries/Makefile.config appropriately
A note here on permissions

• A computer may read (“r”), write (“w”) and/or execute (“x”) a directory or file

• Each action may be allowed by a user (“u”), group (“g”) or others (“o”)

• A computer must follow instructions, called “permissions”, on if it allowed to do any or all of these for any

• Any file that you want to run as a program must be made “executable”
 - `chmod a+x <file>`
 - Change moderations (permissions) so executable (“x”) permissions are added to `<file>` for all (“ugo”)

• You may find you need to verify that directories and files are readable, writable and/or executable as necessary throughout your UNIX experience
Potentially necessary edits

• libraries/Makefile.config is the main control file for the installation process

• Check:
 • X11LIBPATH (path to libX11)
 • X11INCPATH (path to Xlib.h)
 • MAXSIT (max. number of sites to process simultaneously)
 • MAXSAT (do not change)
 • MAXATM (max. atmospheric estimates per session)
 • MAXEPC (max. epochs per session, e.g. 24 hours at 30 s interval = 2880 measurement epochs)
 • OS block (usually no need to change)
Setting environment variables

• sh/bash (e.g. in ~/.bash_profile, ~/.bashrc or ~/.profile):

```bash
gg='/Users/Mike/Programs/gg/10.70'
PATH="$gg/com:$gg/gamit/bin:$gg/kf/bin:$PATH"; export PATH
HELP_DIR="$gg/help/"; export HELP_DIR
INSTITUTE='MIT'; export INSTITUTE
```

• csh/tcsh (e.g. in ~/.cshrc):

```csh
set gg = '/Users/Mike/Programs/gg/10.70'
setenv PATH "$gg/com:$gg/gamit/bin:$gg/kf/bin:$PATH"
setenv HELP_DIR "$gg/help/"
setenv INSTITUTE 'MIT'
```
Additional environment variables

• Some locales (your computer’s language and numbers setting) use a comma for the decimal separator rather than a point, e.g. “1000.00” versus “1000,00” for one thousand to two decimal places

• This is typical in most languages other than English

• Using this scheme breaks certain GAMIT/GLOBK scripts that perform basic numeric calculations while formatting data, as well as GMT

• To avoid this problem without having to change your language, set the “LC_NUMERIC” environment variable to “C” or an appropriate language locale, e.g. “en_GB.UTF-8” or “en_US.UTF-8”
 • sh/bash (e.g. in ~/.bash_profile, ~/.bashrc or ~/.profile):
 LC_NUMERIC='C'; export LC_NUMERIC
 • csh/tcsh (e.g. in ~/.cshrc):
 setenv LC_NUMERIC ‘C’
Processing directories
Processing directory

• The *processing* directory will not have the same structure as the *master installation* directory
• Choose a different location, do not process in your master installation directory
• We will, however, be copying or linking to the master installation tables (via symbolic link or “shortcut” ~/gg/tables)
Example continuous GPS structure
Example survey GPS structure
Additional software

• Generic Mapping Tools (GMT)
 (http://gmt.soest.hawaii.edu/)
 • Required for plotting scripts to work
 • Scripts in com/ use GMT 5
 • Prepend com_preGMT5/ to $PATH if using GMT 4
 • These scripts are no longer updated, so switch to GMT 5!

• Tom’s GGMatlab tools
 (http://geoweb.mit.edu/~tah/GGMatlab/)
 • tsview
 • velview