Generating velocity solutions with globk

M. A. Floyd
Massachusetts Institute of Technology, Cambridge, MA, USA
GPS Data Processing and Analysis with GAMIT/GLOBK and track Addis Ababa University, Ethiopia
24-25 \& 27-29 November 2017
http://geoweb.mit.edu/~floyd/courses/gg/201711_AAU/
Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)

Overview

- Basics of "velocity" solutions
- Invoked with "apr_neu all xx xx xx <NEU velocity sigmas>"
- Strategies for setting up solutions (they can take a long time to run)
- Strategies for speeding up solutions.
- Methods for "cleaning up" potential problems
- Different reference frame realizations
- Some examples.
- These solutions involve making decisions about how to treat data and the type of solution to be created - lots of decisions

GLOBK velocity solutions

- The aim of these solutions is to combine many years of data to generate position, velocity, offset, and postseismic parameter estimates. Not uncommon to have 10000 parameters in these solutions.
- Input requirements for these solutions:
- a priori coordinate and velocity file. Used as a check on positions in daily solutions (for editing of bad solutions) and adjustments are a priori values (a priori sigmas are for these values)
- Earthquake file which specifies when earthquakes, discontinuities, and misnamed stations affect solution. Critical that this file correctly describe data.
- Process noise parameters for each station. Critical for generating realistic standard deviations for the velocity estimates (sh_gen_stats).

Velocity solution strategies

- In general careful setup (i.e., correct apriori coordinate, earthquake file and process noise files) is needed since each run that corrects a problem can take several days. Incorrect solutions may not complete correctly and results may be subtly wrong.
- General strategy for iteratively generating velocity solution:
- Define a core-set of sites (usually 20-200 sites) where the solution runs quickly. Test files on this solutions and use the coordinate/velocity estimates to form the reference frame for time series generation.
- Time series using these reference frame sites and then test (RMS scatter, discontinuity tests) to form a more complete earthquake and apriori coordinate/velocity files.
- Steps above are repeated, usually increasing number of stations until solution is complete. As new stations are added missed discontinuities and bad process noise models can cause problems.
- Aim here is make sure that when a large solution is run (maybe several days of CPU time) that the run completes successfully.

Before velocity runs

- Surveys may be combined into one solution per survey
- No need to re-run glred again to see long-term time series
- Multiple ".org"-files may be read by tssum or sh_plot_pos
- tssum ts_pos mit.final_igb08-R surveyl_comb.org survey2_comb.org
- ts_pos is the name of a directory for the .pos files. (. can be used)
- sh_plot_pos -f survey1_comb.org survey2_comb.org -k ...

Example: Long-term time series for survey sites

Reasonable repeatability

Outlier in vertical

Excluding outliers or segments of data

- Create "rename" file records and add to globk command file's "eq_file" option, e.g.

```
    rename PTRB PTRB_XPS h1407080610_nb4a
    rename PTRB PTRB_XPS 2014 07 07 18 00 2014 07 08 18 30
    rename ABCD ABCD_XCL 2013 07 08 00 00
```

- "XPS" will not exclude data from glred (so still visible in time series) but will exclude data from globk (combination or velocity solution)
- "XCL" will exclude data from all glred or globk runs

Run globk

- Create new ".gdl"-file with combined binary h-files, e.g. from vsoln/, assuming standard directory hierarchy
-ls ../*/gsoln/*.GLX > vsoln.glx.gdl
- Optionally run glist to see size of solution
- Recommended to prevent problems during long globk run
- glist can read earthquake file and globk use site type commands. (Useful if a globk solution seems to be missing or has extra sites.)
- Run globk
- This may take many hours for very large/long velocity solutions
- Use tsfit with earthquake file to generate a priori site coordinates. Be careful if $\sim / g g /$ tables/itrf08_xxx.apr files also used because some site names permutations may have inconsistent coordinates (use unify_apr to be safe)

glorg for different reference frames

- No need to re-run globk every time you want
- glorg is usually called from globk command file ("org_cmd" option) but glorg may be run separately
- globk 6 globk_vel.prt globk_vel.log globk_vel.gdl globk_vel.cmd
- glorg globk_vel_noam.org ERAS:... glorg_vel.cmd vel.com
- Must have saved the ".com"-file!
- e.g. "com_file @.com"
- Do not use "del_scra yes" in globk command file
- "apr_neu" must be loosely constrained ("apr_rot" and "apr_tran" will also need to be used for sestbl. "BASELINE" experiment solutions.

Use of equates

- With earthquakes and discontinuities, there can be many site names for the same physically location:
- Equate commands in glorg allow the velocity adjustments at these sites to be made the same (or constrained to be the same within a specified sigma)
- "eq_dist" allows site separate by distance to equated (and constrained in latest glorg).
- "eq_4char" equates sites with same 4-character name (useful to stop equates at sites that share antennas).
- Chi-squared increments of equates allows assessment of equates (use "un_equate" for large chi-squared values)
- Use "FIXA" option to make a priori the same for equated sites (better to use consistent a priori file).

Uses of sh_gen_stats

- Velocity solutions are often iterative:
- Generate time series using some reference frame sites (IGb08 sites initially for example).
- Fit to the time series (t sfit) to:
- Find outliers, nature of earthquakes (log needed?), discontinuities
- Self consistent a priori file.
- Used FOGMEx model (realistic sigma) to get process noise model and list of lowcorrelated noise reference frame sites). Use "stabrad" option for dense networks
- Run globk velocity solution to refine reference frame site coordinates and velocities
- Re-generate time series and repeat.

Some comparisons: Approach

- Use sh_exglk -f <soln.org> -vel <soln.vel> -rmdup
to extract velocity estimates (rmdup removes equated sites with the same estimates)
- Program velrot allows fields to be compared (change frames and merge fields as well). For example:
velrot solna.vel nam08 solnb.vel IGS08 ،' ،r ،r ،' N compares to solutions directly (use "RT" instead of " N " to allow rotation and translation rates). Use grep "^S ‘ to get statistics.

Comparisons: Decimation

Decimation: Different days of week (1996-2015 solution, small subset of sites):

Comparison: Time series vs GLOBK

- PBO Combined analyses:

Un-aligned fields (no rotation and translation).
compare 1 PBO_vel_150425.vel PBO_vel_150425KF.vel

| S Component North | $\#$ | 2105 WMean | -0.01 WRMS | $0.12 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.925 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S Component East | $\#$ | 2105 WMean | -0.00 WRMS | $0.13 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.934 |
| S Component Up | $\#$ | 2105 WMean | 0.02 WRMS | $0.31 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.871 |
| S Component Horz | $\#$ | 2105 WMean | -0.01 WRMS | $0.12 \mathrm{~mm} / \mathrm{yr}, \mathrm{NRMS}$ | 0.929 |

compare 4 PBO_vel_150425.vel PBO_vel_150425_NAM08.vel

| S Component North | $\#$ | 1972 WMean | 0.03 WRMS | $0.13 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.965 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S Component East | $\#$ | 1972 WMean | 0.02 WRMS | $0.15 \mathrm{~mm} / \mathrm{yr}$, NRMS | 1.049 |
| S Component Up | $\#$ | 1972 WMean | -0.07 WRMS | $0.41 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.943 |
| S Component Horz | $\#$ | 1972 WMean | 0.02 WRMS | $0.14 \mathrm{~mm} / \mathrm{yr}, \mathrm{NRMS}$ | 1.008 |

compare 7 PBO_vel_150425KF.vel PBO_vel_150425_NAM08.vel

| S Component North | $\#$ | 1969 WMean | 0.04 | WRMS | $0.16 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.952 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S Component East | $\#$ | 1969 WMean | 0.02 WRMS | $0.17 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.967 | |
| S Component Up | $\#$ | 1969 WMean | -0.08 WRMS | $0.44 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.935 | |
| S Component Horz | $\#$ | 1969 WMean | 0.03 WRMS | $0.16 \mathrm{~mm} / \mathrm{yr}$, NRMS | 0.959 | |

PBO_vel_150425.vel: tsfit solution to time series
PBO_vel_150425KF.vel: tsfit Kalman filter solution to timeseries
PBO_vel_150425_NAM08.vel: GLOBK combined velocity solution (NMT+CWU), decimated 7 days, 28-subnet combination. Reference frame realizātion to NAM08 frame sites (~ 600)
See Herring et al., Reviews of Geophysics, 2016 for more detailed comparisons.

Final comments

- Practice large solutions with decimated data sets and small networks (run time increased cubically with number of stations)
- Make sure your a priori coordinates files are consistent (especially with equates)
- Use the out_aprf command in tsfit to generate an apriori which is consistent with your timeseries estimates.

