Dealing with earthquakes and other non-linear motions

T. A. Herring M. A. Floyd R. W. King
Massachusetts Institute of Technology, Cambridge, MA, USA

UNAVCO Headquarters, Boulder, Colorado, USA
19–23 June 2017

http://web.mit.edu/mfloyd/www/courses/gg/201706_UNAVCO/

Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)
Outline

• Previous lecture showed common time series models
 • Linear rate
 • Seasonal terms
 • Temporally correlated noise

• Irregular perturbations to such models include
 • Discontinuities due to equipment or environment changes
 • Discontinuities due to earthquakes
 • Non-linear motions due to earthquakes
 • Non-linear motions due to transient events (e.g. volcanic inflation episodes)

• Recommended implementation
Changes to equipment

• Antenna is main concern, although receiver may also affect continuity of calculated position
 • Even antennas of the same model type may not be manufactured within acceptable geodetic tolerance
• stinf_to_rename useful for creating automatic list
Changes in multipath environment
Rename scheme

• Rename scheme uses first character of suffix
 • XXXX_GPS → XXXX_2PS → XXXX_3PS → ... etc.

• Beyond “9PS”, convert to 10th letter of alphabet (“JPS”) and beyond
 • ... → XXXX_9PS → XXXX_JPS → XXXX_KPS → ... etc.
 • But remember “XPS” is a special case for excluding sites from g1obk runs

• For manual renames (e.g. due to manual inspection rather than known events), use 8 available letters in alphabet before “J”
 • XXXX_APS, XXXX_BPS, etc.
 • But remember “GPS” is a special case (the default)
Earthquakes

- Earthquakes occur at known times
- May exhibit more than just a discontinuity
- Take care when earthquake occurs in the middle of processing day
 - Some data will fall before and some after ground displacement
 - Time series point on day of earthquake may appear between pre-earthquake and post-earthquake position
Radius of influence

1 mm displacement for 10 km hypocentral depth

• “eq_def” line in eq-file contains earthquake ID (two characters), location, etc.
 • ID is used to substitute last two characters of 8-character site name, e.g. XXXX_GPS → XXXX_GSN

• sh_makeeqdef will search archives (ANSS ComCat or ISC) to generate “eq_def” records
Non-linear motions

Logarithmic decay
• Derives from afterslip on fault plane controlled by rate-and-state friction (e.g. Marone et al., 1991)
• Velocity perturbation reduces with \(\frac{1}{t} \)

Exponential decay
• Derives from assumption of viscoelastic relaxation in stressed medium, e.g. after an earthquake
Non-linear motions

Logarithmic decay

Exponential decay

Logarithmic looks good in east; Exponential looks good in north; Height doesn’t care
Many earthquakes...

- Complications arise in a tectonically active area with multiple events
- Sites may be renamed several times and therefore have various two-character suffixes
- Non-linear motions may be included in apr-file with “EXTENDED” records (see \texttt{globk help})
Undocumented effects

2010-04-04 M_w 7.2

- Time series inspection is very important to catch undocumented effects
- Insert manually-determined discontinuities using letter for first character of suffix
- ? Jump is due to washer removal from top of the antenna.
Other phenomena

• Several examples of other phenomena some of which are likely to be motions of the monuments (often not tectonic), propagation medium effects, or failed equipment.

• With continuous data these types of effects can often be diagnosed from the data.

• For artifact effects, multipath and SNR measures are often useful for diagnostics.
Plate Boundary Observatory (PBO) continuous GPS site P203

Start of EGS demo injection

North-westward motion relative to North America

Minor subsidence

Reference longitude: 237.082995440°E

$\nu_{\text{E}} = 16.62 \pm 0.09$ mm/yr
WRMS = 1.4 mm

Reference height: 926.69818 m

$\nu_{\text{U}} = -3.11 \pm 0.21$ mm/yr
WRMS = 3.2 mm
Plate Boundary Observatory (PBO) continuous GPS site P203

- Start of EGS demo injection
- Increased westward motion
- Uplift

- Reference longitude: 237.0829954400°E
- Reference latitude: 38.8661125663°N
- Reference height: 926.69818 m
- \(v_0 = 16.62 \pm 0.09 \text{ mm/yr} \)
- \(v_0 = -3.11 \pm 0.21 \text{ mm/yr} \)
- WRMS = 1.4 mm
- WRMS = 3.2 mm

38°50' 38°45'
122°55' 122°50' 122°45' 122°40'

High temperature reservoir
Production area
Cobb
Cobb Min
Bombay Beach Creep?

Earthquakes and non-linear motions
Episodic events: Yellowstone

Profile of velocity estimates across region. Large error bars (FOGMEx) show systematic sites.
Selected Yellowstone time series

- North (mm)
- East (mm)
- Up (mm)

Sites LKWY HVWY P716 WLWY

Number in 19396, After sigma limit cut 19394, RMS 11.24 mm
Number in 19396, After sigma limit cut 19394, RMS 11.81 mm
Number in 19396, After sigma limit cut 19394, RMS 58.61 mm
Episodic tremor and slip (ETS): Cascadia
Other examples

• The following examples are from the UNACVO GAGE Data technical news:
 http://plus.google.com/u/0/communities/112834235701900858710

• Reports here on various anomalies that have been detected and investigated. Useful place to look for site issues.

• GAGE ACC quarterly reports also contain information on anomalies
Local collapse

- Site EOCG

http://plus.google.com/u/0/communities/112834235701900858710

Figure 1. Original EOCG time series, in the North America-fixed (NAM08) reference frame.

Figure 2. Station EOCG at the Santa Barbara Emergency Operations Center. Seismic vault is located in the foreground. Photo courtesy of Dan Determan, USGS. Photo was taken sometime between July and December 2014.

Figure 3. Subsidence at EOCG. Note the seismic vault has clearly subsided, and the yellow posts have been recently installed. Photo courtesy of Dan Determan, USGS. Photo taken on January 6, 2015.
Landslide prone site

Location of earlier landslide showing strong seasonal

Figure 1. P299 time series. Original plot in NAM08 reference frame on right; slope has been removed on left for the horizontal components only. The strong seasonal signals are caused by the site’s proximity to a small landslide in the Diablo Range, California. The ground motions have decreased in magnitude since 2011, when drought conditions developed from a decline in annual precipitation. The presence of water appears to control ground stability near the slide.

Figure 3. Google Earth view of P299 and landslide. The slide originates in the small bowl to the south of P299 and flows downhill into a chink in the base. Original image (left) has been annotated to show extent of slide (right).
Ground water P271

Site P271 is strongly affected by ground water withdrawal

There are also horizontal periodic signals as well

Figure 1. Photo of station P271 taken in April 2013.

Figure 3. P271 vertical motion (red) vs. groundwater levels at a well ~5 km away (blue).
Vegetation Growth P158

North (not shown) is less affected.

Figure 4. P158 at installation (left), ~10 years later (middle), ~10 years+2 hours later (right). The small tree north of the station grew into a larger tree and was removed on March 3, 2014.
Snow on antenna

WRMS: 9.64 mm NRMS: 30.14 #: 2669 data Rate: -2.68 ± 0.45 mm/yr

WRMS: 6.94 mm NRMS: 26.83 #: 2669 data Rate: -0.26 ± 0.30 mm/yr

WRMS: 18.92 mm NRMS: 16.96 #: 2669 data Rate: -0.11 ± 0.78 mm/yr
Skewed position residuals: Atmosphere delays?

Data AV38.pbo.final нам08 North

Data AV38.pbo.final нам08 East

Data AV38.pbo.final нам08 Up

2017/06/21
• Know your goals
 • Only fit “nuisance” terms
 • It is usually best not to try to fit signals that you are interested in, e.g. seasonal terms if you are studying these.

• Depending on your goal (e.g. linear tectonic velocities), sometimes you just have to abandon data as it is likely to do more harm than good (rename to xxxx_XPS or xxxx_XCL)
 • Adding large process noise in g1obk is one approach but be careful not to make too large
 • GLOBK “sig_neu” command can be used for small duration “bad” events