

GPS measurements in the field

M. A. Floyd

Massachusetts Institute of Technology, Cambridge, MA, USA

School of Earth Sciences, University of Bristol United Kingdom 2–5 May 2017

Material from T. A. Herring, R. W. King, M. A. Floyd (MIT) and S. C. McClusky (now ANU)

http://web.mit.edu/mfloyd/www/courses/gg/201705_Bristol/

Outline

- Survey setups
- Potential errors
 - Human error
 - Monument error
 - Seasonal error
 - System error
- Hands-on equipment

Survey setups

- May be done with:
 - Tripod
 - Spike mount
 - Pole
- Intentions:
 - Set antenna horizontal
 - Ensure antenna is centered above survey mark (necessarily requires that the antenna mount is set horizontal)
 - Align antenna conventional mark to true north

Surveyor's tripod

- Advantages:
 - Easily portable
 - Stable on flat ground
- Disadvantages:
 - Inconsistent height setup (variable multipath)
 - Easily disturbed

Fixed-height mast (e.g. Tech2000)

- Advantages:
 - Automatically centered
 - Fixed height (reduces human error)
 - Stable
 - Identical multipath environment each setup
- Disadvantages:
 - Difficult first-time placement due to anchor installation (also requires large, hard surface)

Spike mounts

- Advantages:
 - Fixed height (reduces human error)
- Disadvantages:
 - Awkward to level precisely and orientate antenna
 - Proximity to ground may increase direct multipath signal

http://facility.unavco.org

Basic rules for any setup

- Know how well your equipment is calibrated, and how to calibrate or verify its accuracy if necessary
 - A 1-D level is a very useful tool to have!
- Iterate using finer and finer adjustments
 - It's a rare day that the best of us find an acceptably accurate setup the first time
- Always work upward from the base of a tripod setup
 - Fix the legs once an approximate (within a few cm) position is achieved
 - Work exclusively with the tribrach on the platform thereafter
- Always level the (optical) plummet before assessing the centering, especially after making adjustments

Human error

Location errors

Setup errors

- Episodic survey setups can mean that measurements are not centered perfectly over a mark or the antenna height not measured accurately
- These measurements tend to exhibit an independent and random nature

Archive errors

		L03662801 56628		
		GPS Daily Observation Log Stanford University Session Name: 0626-271-		
		Station Name: 0626 4-Char ID: 0626		
		Location: <u>Coggest</u> California Observing Monument Inscription: <u>UG26</u> - 1942- California		
		Operators: <u>Carl Class</u> <u>serial #:</u>		
2.10 OBSERVATION DATA G (GPS) teqc 2006Jul20 UNAVCO Archive Ops 20060725 16:48:29U1	RINEX VE CPGM / RU	Agency: Die Chand / //		
Solaris 5.9 UltraSparc IIi cc -xarch=v9 SC5.5 =+- *Sparc	COMMENT	Sketch of Observing Monument		
BIT 2 OF LLI FLAGS DATA COLLECTED UNDER A/S CONDITION U626	COMMENT MARKER N	Collection Poter 2 4 3		
U626	MARKER N	Notes:		
UNKNOWN Stanford University	OBSERVER			
3414A05687 TRIMBLE 4000SSE NP 5.71 / SP 1.26 3015A00136 TRM14532.00	REC # / ANT # /	Slant I or Vertical Notch # Defore After		
-2683212-3014 -4185018.7102 3983204.9361	APPROX P			
1.4755 0.0000 0.0000	ANTENNA:			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WAVELENG # / TYPE			
30.0000	# / IIFE INTERVAL	Ht. in Inches: $\frac{451}{45}$ $\frac{1451}{45}$		
	<u>.</u>	Height Entered into Receiver: 1/5 3/6 a m		
	-	Magnetic Declination: <u>345</u> Compass Reading:		
1994 9 28 16 7 30.000000 GPS	TIME OF END OF H	Observation Times UTC Time UTC Date UTC Day Local Time Local Date Scheduled Start Time:		
94 9 28 16 7 30.0000000 0 5G 5G 6G17G20G24	END OF H	Scheduled End Time:		
2437477.48856 1792564.39355 22428902.4774	22			
-548226.77657 -402556.82256 20834866.1484	20			
-567509.56556 -371824.37155 22860949.9614 1203057.74657 883752.12057 20612879.2734	22 20			
793138.12755 501650.82355 22928979.6334	22	Did anything abnormal or unusual occur? Wes No Discuss any significant Deckland		
		END		
	• - 1 - 1	I Bubble Division High To Say		
		5 Der		
2017/05/04	Field GPS	s 10		
	. 1010 010			

Monument error

Survey marks

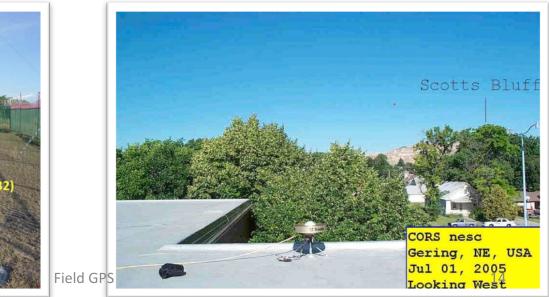
Monuments for tectonics (best)

Drilled monuments

- Attached to solid bedrock
- Very stable
- Must be secured somehow

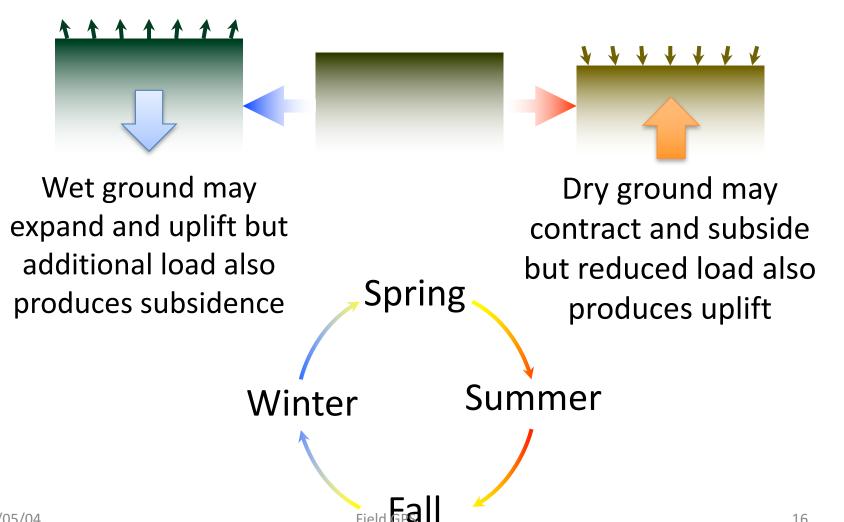
Shallow rod in bedrock

- Attached to solid bedrock
- Cheap and easy to install
- Must be secured somehow


Monuments for tectonics (other)

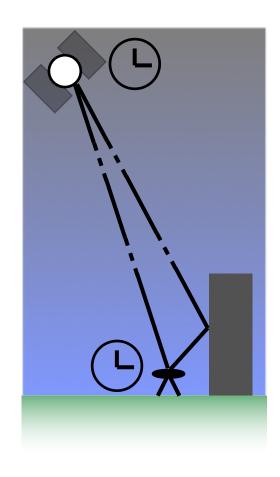
High metal masts

- Generally secure
- Suffer from heat expansion and contraction
- May suffer from unstable foundation

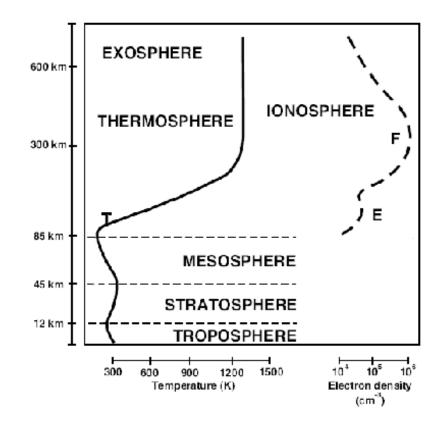

Roofs of buildings

- Easily accessible
- Generally secure
- No knowledge of building foundation stability

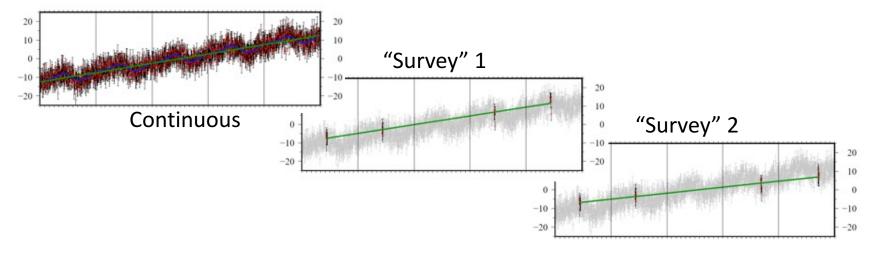
Seasonal error


Groundwater variations

System error


Propagation effects

- Ionosphere
 - Frequency-dispersive layer causes differential delay of L1 and L2 as a function of (unknown) total electron content (TEC)
- Troposhere
 - Delay through medium, especially water in atmosphere
- Clock errors
 - Offsets and drift of receiver and satellite clocks affects time, and therefore phase/distance, measurement
- Multipath
 - Back-scattering of signal interferes with direct signals
 - Random: no good method for mitigation or modeling


Atmospheric effects

- Ionosphere
 - delay $\propto 1/f^2$
- Troposphere
 - "Dry" delay
 - "Wet" delay

Time series noise characteristics

Survey timing

	<i>x</i> ₀	V	A ₀	τ ₀	A ₁	τ ₁	ε
Input	–12.5 mm	5 mm/yr	2 mm	1.88 (0.3 yr)	1 mm	5.65 (0.45 yr)	3 mm
Continuous *	-12.41 mm	4.93 mm/yr	1.82 mm	1.93 (0.31 yr)	0.91 mm	5.48 (0.44 yr)	3.07 mm
"Survey" 1	-9.55 mm	4.72 mm/yr	-	-	-	-	-
"Survey" 2	-8.21 mm	3.21 mm/yr	-	-	-	-	-

2017/05/0 Maximum likelihood estimation of velogity and periodic terms, given a noise model 21

"Unknown" error?

 A potential error is anything that is not accounted for by a modeled or estimated parameter