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Issues	in	GPS	Error	Analysis	

•  What	are	the	sources	of	the	errors	?	

•  How	much	of	the	error	can	we	remove	by	be[er	modeling	?	

•  Do	we	have	enough	informaDon	to	infer	the	uncertainDes	
from	the	data	?	

•  What	mathemaDcal	tools	can	we	use	to	represent	the	errors	
and	uncertainDes	?		
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Determining	the	UncertainDes	of	GPS	
Parameter	EsDmates	

•  Rigorous	esDmate	of	uncertainDes	requires	full	
knowledge	of	the	error	spectrum—both	temporal	and	
spaDal	correlaDons	(never	possible)	

•  Sufficient	approximaDons	are	oaen	available	by	
examining	Dme	series	(phase	and/or	posiDon)	and	
reweighDng	data	

•  Whatever	the	assumed	error	model	and	tools	used	to	
implement	it,	external	validaDon	is	important	
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Tools	for	Error	Analysis	in	GAMIT/GLOBK	

•  GAMIT:			AUTCLN	reweight	=	Y	(default)	uses	phase	rms	from	poseit	edit	to	reweight	data	with		
constant	+	elevaDon-dependent	terms	

•  GLOBK	
–  rename	(	eq_file)	_XPS	or	_XCL	to	remove	outliers	
–  sig_neu			adds	white	noise	by	staDon	and	span;	best	way	to	“rescale”	the	random	noise	

component;	a	large	value	can	also	subsDtute	for	_XPS/_XCL	renames	for	removing	
outliers	

–  mar_neu		adds	random-walk	noise:	principal	method	for	controlling	velocity	uncertainDes		
–  In	the	gdl	files,	can	rescale	variances	of	an	enDre	h-file:		useful	when	combining	soluDons	

from	with	different	sampling	rates	or	from	different	programs	(Bernese,	GIPSY)	
•  UDliDes	

–  tsview	and	tsfit	can	generate	_XPS	commands	graphically	or	automaDcally	
–  grw	and	vrw	can	generate	sig_neu	commands	with	a	few	key	strokes	
–  FOGMEx	(“realisDc	sigma”)	algorithm	implemented	in	tsview	(MATLAB)	and	tsfit/ensum;	

sh_gen_stats	generates	mar_neu	commands	for	globk	based	on	the	noise	esDmates	
–  sh_plotvel	(GMT)	allows	seong	of	confidence	level	of	error	ellipses	
–  sh_tshist	and	sh_velhist	(GMT)	can	be	used	to	generate	histograms	of	Dme	series	and	

velociDes.	
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Sources	of	Error	

•  Signal	propagaDon	effects	
–  Receiver	noise	
–  Ionospheric	effects	
–  Signal	sca[ering	(	antenna	phase	center	/	mulDpath	)		
–  Atmospheric	delay	(mainly	water	vapor)	

•  Unmodeled	moDons	of	the	staDon	
– Monument	instability	
–  Loading	of	the	crust	by	atmosphere,	oceans,	and	surface	
water	

•  Unmodeled	moDons	of	the	satellites	
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Epochs	

1																					2																				3																		4																			5			Hours	

	
	20	

		0		mm	

-20	

ElevaDon	angle	and	phase	residuals	for	single	satellite	

Characterizing	Phase	Noise	
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Fixed	antennas	

Walls	

Poles	

Reinforced	concrete	pillars	

Deep-bracing	

h[p://pbo.unavco.org/instruments/gps/monumentaDon	
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Time	series	characterisDcs	



Time	series	components	
observed	
posiDon	

(linear)	
velocity	term	

iniDal	
posiDon	
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observed	
posiDon	

(linear)	
velocity	term	

annual	period	
sinusoid	

iniDal	
posiDon	

Time	series	components	
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observed	
posiDon	

(linear)	
velocity	term	

annual	period	
sinusoid	

semi-annual	
period	sinusoid	

iniDal	
posiDon	

seasonal	term	

Time	series	components	

2016/05/25	 Basic	error	analysis	 11	



observed	
posiDon	

(linear)	
velocity	term	

annual	period	
sinusoid	

semi-annual	
period	sinusoid	

iniDal	
posiDon	

seasonal	term	
ε	=	3	mm	white	noise	

Time	series	components	
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“White”	noise	
•  Time-independent	(uncorrelated)	
•  Magnitude	has	conDnuous	probability	funcDon,	e.g.	Gaussian	

distribuDon	
•  DirecDon	is	uniformly	random	

“True”	displacement	per	Dme	step	
Independent	(“white”)	noise	error	
Observed	displacement	aaer	Dme	step	t	(v	=	d/t)	
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“Colored”	noise	
•  Time-dependent	(correlated):	power-law,	first-order	Gauss-

Markov,	etc	
•  Convergence	to	“true”	velocity	is	slower	than	with	white	

noise,	i.e.	velocity	uncertainty	is	larger	

“True”	displacement	per	Dme	step	
Correlated	(“colored”)	noise	error*	
Observed	displacement	aaer	Dme	step	t	(v	=	d/t)	
*	example	is	“random	walk”	(Dme-integrated	white	noise)	

•  Must	be	taken	into	account	to	produce	
more	“realisDc”	velociDes	
	
This	is	staDsDcal	and	sDll	does	not	
account	for	all	other	(unmodeled)	
errors	elsewhere	in	the	GPS	system	
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Annual	signals	from	atmospheric	and	hydrological	loading,	monument	transla,on	and	
,lt,	and	antenna	temperature	sensi,vity	are	common	in	GPS	,me	series	

Velocity	Errors	due	to	Seasonal	Signals	in	ConDnuous	Time	Series	
	

TheoreDcal	analysis	of	a	conDnuous	Dme	series	
by	Blewi(	and	Lavallee	[2002,	2003]	

	
Top:		Bias	in	velocity	from	a	1mm	sinusoidal	

signal	in-phase	and		with	a	90-degree	lag	
with	respect	to	the	start	of	the	data	span	

	
	
	
Bo(om:		Maximum	and	rms	velocity		bias	over	

all	phase	angles	
–  The	minimum	bias	is	NOT	obtained	with	

conDnuous	data	spanning	an	even	
number	of	years		

–  The	bias	becomes	small	aaer	3.5	years	
of		observaDon	
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Characterizing	
the	Noise	in	
Daily	PosiDon	
EsDmates			

Note	temporal	
correlaDons	of	
30-100	days	and	
seasonal	terms	
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Figure	5	from	Williams	et	al	[2004]:		Power	
spectrum	for	common-mode	error	in	the	SOPAC	
regional	SCIGN	analysis.		Lines	are	best-fit	WN	+	FN	
models	(solid=mean	ampl;	dashed=MLE)	
	
Note	lack	of	taper	and	misfit	for	periods	>	1	yr	

Spectral	Analysis	of	the	Time	Series	
to	EsDmate	an	Error	Model	
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Summary	of	Spectral	Analysis	Approach		

•  Power	law:	slope	of	line	fit	to	spectrum	
–  		0	=	white	noise	
–  -1	=	flicker	noise	
–  -2	=	random	walk		

•  Non-integer	spectral	index	(e.g.	“fracDon	white	noise”	à	1	>	k	>	-1	)	

•  Good	discussion	in	Williams	[2003]	

•  Problems:			
–  ComputaDonally	intensive	
–  No	model	captures	reliably	the	lowest-frequency	part	of	the	spectrum	
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CATS	(Williams,	2008)	

•  Create	and	Analyze	Time	Series	
•  Maximum	likelihood	esDmator	for	chosen	
model	
–  IniDal	posiDon	and	velocity	
– Seasonal	cycles	(sum	of	periodic	terms)	[opDonal]	
– Exponent	of	power	law	noise	model	

•  Requires	some	linear	algebra	libraries	(BLAS	
and	LAPACK)	to	be	installed	on	computer	
(common	nowadays,	but	check!)	
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Hector	(Bos	et	al.,	2013)	
•  Much	the	same	as	CATS	but	faster	algorithm	
•  Maximum	likelihood	esDmator	for	chosen	model	
–  IniDal	posiDon	and	velocity	
–  Seasonal	cycles	(sum	of	periodic	terms)	[opDonal]	
–  Exponent	of	power	law	noise	model	
– Also		

•  Requires	ATLAS	linear	algebra	libraries	to	be	
installed	on	computer	

•  Linux	package	available	but	tricky	to	install	from	
source	due	to	ATLAS	requirement	
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sh_cats/sh_hector

•  Scripts	to	aid	batch	processing	of	Dme	series	
with	CATS	or	Hector	

•  Requires	CATS	and/or	Hector	to	be	pre-
installed	

•  Outputs	
– VelociDes	in	“.vel”-file	format	
– Equivalent	random	walk	magnitudes	in	“mar_neu”	
commands	for	sourcing	in	globk	command	file	

•  Can	take	a	long	Dme!	
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White	noise	vs	flicker	noise	from	Mao	et	al.	[1999]	spectral	
analysis	of	23	global	staDons	

Short-cut	(Mao	et	al,	1998):			
Use	white	noise	staDsDcs	(	wrms)	to	predict	the	flicker	noise	
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“RealisDc	Sigma”	Algorithm	for	Velocity	UncertainDes	

•  MoDvaDon:	computaDonal	efficiency,	handle	Dme	series	with	varying	
lengths	and	data	gaps;	obtain	a	model	that	can	be	used	in	globk	

•  Concept:		The	departure	from	a	white-noise	(sqrt	n)	reducDon	in	noise	
with	averaging	provides	a	measure	of	correlated	noise.	

•  ImplementaDon:	
–  Fit	the	values	of	chi2	vs	averaging	Dme	to	the	exponenDal	funcDon	

expected	for	a	first-order	Gauss-Markov	(FOGM)	process	(amplitude,	
correlaDon	Dme)	

–  Use	the	chi2	value	for	infinite	averaging	Dme	predicted	from	this	
model	to	scale	the	white-noise	sigma	esDmates	from	the	original	fit		

–  							and/or	
–  Fit	the	values	to	a	FOGM	with	infinite	averaging	Dme	(i.e.,	random	

walk)	and	use	these	esDmates	as	input	to	globk	(mar_neu	command)	
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Extrapolated	variance	(FOGMEx)	
•  For	independent	noise,	variance	
∝	1/√Ndata

	

•  For	temporally	correlated	noise,	
variance	(or	𝜒2/d.o.f.)	of	data	
increases	with	increasing	window	
size	

•  ExtrapolaDon	to	“infinite	Dme”	
can	be	achieved	by	fiong	an	
asymptoDc	funcDon	to	RMS	as	a	
funcDon	of	Dme	window	
–  𝜒2/d.o.f.	∝	e−𝜎𝜏	

•  AsymptoDc	value	is	good	
esDmate	of	long-term	variance	
factor	

•  Use	“real_sigma”	opDon	in	
tsfit
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Yellow:	Daily	(raw)							Blue:		7-day	averages	

Understanding	the	FOGMEx	algorithm:	Effect	of	averaging	on	Dme-series	noise	

Note	the	
dominance	of	
correlated	errors	
and	unrealisDc	
rate	uncertainDes	
with	a	white	
noise	
assumpDon:		
	.01	mm/yr		N,E	
.04	mm/yr			U		
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Same	site,		East	component					(	daily	wrms	0.9	mm				nrms	0.5	)	

64-d	avg	
wrms	0.7	mm	
nrms		2.0	
	

100-d	avg	
wrms	0.6	mm	
nrms		3.4	
	

400-d	avg	
wrms	0.3	mm	
nrms		3.1	
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Red	lines	show	the	68%	probability	bounds	of	the	velocity	based	on	the	results	of	applying	the	
algorithm.		

Using	TSVIEW	to	compute	and	display	the	“realisDc-sigma”	results				

Note	rate	
uncertainDes	
with	the	
“realisDc-
sigma”	
algorithm	:		
	
0.09		mm/yr	N	
0.13	mm/yr	E	
0.13	mm/yr	U		
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Comparison	of	esDmated	velocity	uncertainDes	using	spectral	
analysis	(CATS)	and	Gauss-Markov	fiong	of	averages	(FOGMEx)	

Plot	courtesy	E.	Calais	
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Summary	of	PracDcal	Approaches	

•  White	noise	+	flicker	noise	(+	random	walk)	to	model	the	spectrum	[Williams	et	al.,	
2004]	

•  White	noise	as	a	proxy	for	flicker	noise	[Mao	et	al.,	1999]	
•  Random	walk	to	model	to	model	an	exponenDal	spectrum	[Herring	“FOGMEx”	

algorithm	for	velociDes]	
•  “Eyeball”	white	noise	+	random	walk	for	non-conDnuous	data	
______________________________________			
•  Only	the	last	two	can	be	applied	in	GLOBK	for	velocity	esDmaDon	
•  All	approaches	require	common	sense	and	verificaDon																																																																								
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External	validaDon	of	velocity	uncertainDes	by	comparing	
with	a	model	
	-		Simple	case:	assume	no	strain	within	a	geologically	rigid	block	

GMT	plot	at	
70%	
confidence	

17	sites	in	
central	
Macedonia:	
4-5	velociDes	
pierce	error	
ellipses	
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..	same	soluDon	plo[ed	with	95%	confidence	ellipses	

1-2	of	17	
velociDes	
pierce	error	
ellipses	
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McCaffrey	et	al.	2007	

External	validaDon	of	velocity	uncertainDes	by	comparing	with	a	model	
	-	a	more	complex	case	of	a	large	network	in	the	Cascadia	subducDon	zone	

Colors	show	slipping	
and	locked	porDons	
of	the	subducDng	
slab	where	the	
surface	velociDes	are	
highly	sensiDve	to	
the	model;		area	to	
the	east	is	slowly	
deforming	and	
insensiDve	to	the	
details	of	the	model	
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VelociDes	and	
70%	error	
ellipses	for	300	
sites	observed	by	
conDnuous	and	
survey-mode	
GPS	1991-2004	
	
Test	area	(next	
slide)	is	east	of	
238E	
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Residuals	to	elasDc	block	
model	for	73	sites	in	
slowly	deforming	region	
	
Error	ellipses	are	for	70%	
confidence:		
13-17	velociDes	pierce	
their	ellipse		
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CumulaDve	histogram	of	
normalized	velocity	
residuals	for	Eastern	
Oregon	&	Washington								
(	70	sites	)	
	
Noise	added	to	posiDon	for	
each	survey:			
		0.5	mm	random	
	1.0	mm/sqrt(yr))	random	walk		
	
Solid	line	is	theoreDcal	for	a	
chi	distribuDon	

Percent	
Within	
RaDo	

RaDo	(velocity	magnitude/uncertainty)	

StaDsDcs	of	Velocity	Residuals	
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RaDo	(velocity	magnitude/uncertainty)	
	

Percent	
Within	
RaDo	
	

Same	as	last	slide	but	with	a	
smaller	random-walk	noise	
added	:	
	
		0.5	mm	random	
		0.5	mm/yr	random	walk		
	
(	vs	1.0	mm/sqrt(yr))	RW	for	
‘best’	noise	model	)	
	
Note	greater	number	of		
residuals	in	range	of	1.5-2.0	
sigma	
	

StaDsDcs	of	Velocity	Residuals	
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Percent	
Within	
RaDo	
	

Same	as	last	slide	but	with	larger	
random	and	random-walk	noise	
added	:	
	
		2.0		mm	white	noise	
		1.5	mm/sqrt(yr))	random	walk		
	
(	vs	0.5	mm	WN	and	1.0	mm/sqrt(yr))	
RW	for	‘best’	noise	model	)	
	
Note	smaller	number	of		residuals	in	all	
ranges	above	0.1-sigma	
	

RaDo	(velocity	magnitude/uncertainty)	
	

StaDsDcs	of	Velocity	Residuals	
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Summary	

•  All	algorithms	for	compuDng	esDmates	of	standard	deviaDons	
have	various	problems:		Fundamentally,	rate	standard	
deviaDons		are	dependent	on	low	frequency	part	of	noise	
spectrum	which	is	poorly	determined.	

•  AssumpDons	of	staDonarity	are	oaen	not	valid		

•  FOGMEx	(“realisDc	sigma”)	algorithm	is	a	convenient	and	
reliable	approach	to	geong	velocity	uncertainDes	in	globk		

•  Velocity	residuals	from	a	physical	model,	together	with	their	
uncertainDes,	can	be	used	to	validate	the	error	model	
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