I W Em Massachusetts K’(/' A Korea Institute of Geoscience
I I Institute of J and Mineral Resources

Technology

Vertical loading and
atmospheric parameters

T. A. Herring M. A. Floyd

Massachusetts Institute of Technology

GAMIT/GLOBK/TRACK Short Course for GPS Data Analysis

Korea Institute of Geoscience and Mineral Resources (KIGAM)
Daejeon, Republic of Korea

23-27 May 2016

Material from T. A. Herring, R. W. King, M. A. Floyd (MIT) and S. C. McClusky (now ANU)



OVERVIEW

Atmospheric delay treatment and issues

— GAMIT setup for different approaches

— Impacts of atmospheric modeling

Loading

— GAMIT setup and some results

Estimating and extracting atmospheric parameters
Impact of other models on vertical

— Antenna calibrations
— Elevation angle

— Antenna height in multipath environment



Challenges and Opportunities in GPS Vertical Measurements

“One-sided” geometry increases vertical uncertainties relative to horizontal and
makes the vertical more sensitive to session length

For geophysical measurements the atmospheric delay and signal scattering are
unwanted sources of noise

For meteorological applications, the atmospheric delay due to water vapor is an
important signal; the hydrostatic delay and signal scattering are sources of noise

Loading of the crust by the oceans, atmosphere, and water can be either signal or
noise

Local hydrological uplift or subsidence can be either signal or noise

Changes in instrumentation are to be avoided



Atmospheric model

 The apriori models used in GAMIT for the atmospheric
delays are controlled by the sestbl. entries:

Met obs source = UFL GPT 50 ; hierarchical list
with humidity value at the end; e.g.
RNX UFL GPT 50 ; default GPT 50

DMap = VMF1 ; GMF (default)/VMF1/NMFH;
GMF now invokes GPT2 if gpt.grid is
available (default)

WMap = VMF1 ; GMF (default)/VMF1/NMFW

Use map.list = N ; VMF1 list file with
mapping functions, ZHD, ZWD, P, Pw,
T, Ht

Use map.grid =Y ; VMF1l grid file with

mapping functions and ZHD

e Above would used Vienna mapping functions and met data (surface
pressure) from these files. Recommended but not default because
of need for grid files.



Setup to use VMF1

* To use VMF1: Met and mapping functions

— you need to download vmflgrd.YYYY from
everest.mit.edu

— Create links in ~/gg/tables between map.grid.YYYY
and the vimf1 files (due to size we assume they
may stored in some other location)

— sh_gamit will automatically link day directory files
to your gg/tables files.

 The met source is hierarchical but the
mapping functions must specified.



Impact of met source

Slope: -0.19 +/- 0.01 L
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Difference between
a) surface pressure derived from
11 ?

standard sea level pressure and the
mean surface pressure derived from the
GPT model.

b) station heights differences using the
two sources of a priori pressure.

c) Relation between a priori pressure
differences

and height differences. Elevation-
dependent weighting was used in the
GPS analysis with a minimum elevation
angle of 7 deg.
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Short-period Variations in Surface Pressure not Modeled by GPT

dZTD (mm)
dPress (hPa)

Differences in GPS estimates of ZTD
at Algonquin, Ny Alessund, Wettzell

and Westford computed using static or

dZTD (mm)
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observed surface pressure to derive

the a prior1t. Height differences will be

dZTD (mm)
dPress (hPa)

about twice as large. (Elevation-

dependent weighting used).
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dPress (hPa)
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Loading Effects

* Invoking in GAMIT; sestbl. Entries

Tides applied = 31 ; Binary coded: 1 earth 2 freg-dep 4 pole
8 ocean 16 remove mean for pole tide

; 32 atmosphere ; default = 31
Use otl.list = N ; Ocean tidal loading list file from 0SO

Use otl.grid =Y Ocean tidal loading grid file, GAMIT-
format converted from OSO

Apply atm loading = N ; Y/N for atmospheric loading

Use atml.list = N ; Atmospheric (non-tidal) loading list
file from LU

Use atml.grid = N ; Atmospheric (non-tidal) loading grid
file from LU, converted to GAMIT format

Use atl.list = N ; Atmospheric tides, list file, not yet
available

Use atl.grid = N ; Atmospheric tides, grid file

e Default settings. Consistent with IGS ITRF2014 contribution (i.e., no non-
tidal loading applied).



To apply “Tidal” loading

* QOcean tidal loading is needed. Link otl.grid in gg/tables
to otl FES2004.grid (download from everest.mit.edu;
not included in standard tar files due to size). Close to
the coast in complicated regions, list values specific to
a location might be better. Be careful that nearby sites
don’t from different sources.

* “Tidal” atmospheric pressure loading atl.grid has
diurnal and semidiurnal S1 and S2 load. Nominally
removed from 6hr tabular atmospheric loading values
before interpolation (usefulness of this model is not
clear --- mostly harmless).
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300

Locations at “corners”
WES2 288.5 42 .6
ALBH 236.5 48.4
RICH 279.6 25.6
SIO 242.8 32.8
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To apply non-tidal loading

Set sestbl. for atml.grid and link atml.grid.YYYY in gg/tables to the
appropriate grid files. (atml.list option currently not used).

When linking atml.grid, there are choices of loading types (files
available in GRIDS on everest.mit.edu)

— atmdisp_cm.YYYY: Center of mass, 6hr raw data

— atmfilt_cm.YYYY: Center of mass, filtered to remove periods less
than~1.2 day. Should be used with S1/S2 atl.grid file.

— Center of figure (cf) and center of earth (ce) frames are available also
(these frames are almost identical).

When working in current year, near realtime, updated files from
everest need to be downloaded regularly.

Atml Loading applied in GAMIT can be removed in GLOBK with the
appl_mod command.

Hydrology loading is supported in the file formats but is currently
not implemented in GAMIT.



Annual Component of Vertical Loading
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From Dong et al. J. Geophys. Res., 107, 2075, 2002
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Atmospheric pressure loading at mid-latitudes
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BURN North Offset 4762193.218 m
rate(mm/fyr)= 139+ 0.04 nrms= 0.69 wrms= 1.5 mm# 1578
20 T
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BURN East Offset 19785454.795 m
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BURN Up Offset 1180.839 m
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phare and loading

Time series for
continuous station in
(dry) eastern Oregon

Vertical wrms 5.5 mm,
higher than the best
stations. Systematics
may be atmospheric or
hydrological loading,
Local hydrolology, or
Instrumental effects
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Example: Atmospheric load
* AB27 in central Alaska

Site AB27
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2016/05/24 Verticals: atmosphere and loading 16



Example: Atmospheric load
e AC52 in Southern coastal Alaska
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Example: Atmospheric load
e AC52 in Southern coastal Alaska: North
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Severe meteorological conditions

e Other factors to consider:
— Rapid change in atmospheric pressure affects (dry) hydrostatic
delay (mostly function of pressure and temperature)

* Low pressure reduces ZHD, possibly making site appear higher
(consider position constraint)

* BUT, also reduces atmospheric loading, which physically raises site
position (~ 0.5 mm/hPa)

 BUT, additional loading due to raised sea-level (“inverted barometer”)
physically lowers site position proportionally near coasts

— Heavy rainfall creates short-term, unmodelled surface loading
— Storm surge creates short-term, unmodelled ocean loading
* Additional loading physically lowers site position

 How to deconvolve competing physical and apparent
effects?



Effect of the Neutral Atmosphere on GPS Measurements

Slant delay = (Zenith Hydrostatic Delay) * (“Dry” Mapping Function) +
(Zenith Wet Delay) * (Wet Mapping Function)

e To recover the water vapor (ZWD) for meteorological studies, you must have a
very accurate measure of the hydrostatic delay (ZHD) from a barometer at the site.

e For height studies, a less accurate model for the ZHD is acceptable, but still
important because the wet and dry mapping functions are different (see next slides)

e The mapping functions used can also be important for low elevation angles

e For both a priori ZHD and mapping functions, you have a choice in GAMIT of using
values computed at 6-hr intervals from numerical weather models (VMF1 grids) or
an analytical fit to 20-years of VMF1 values, GPT and GMF (defaults)



Sensing Atmospheric Delay

The signal from each GPS satellite is delayed by an amount dependent on the
pressure and humidity and its elevation above the horizon. We invert the
measurements to estimate the average delay at the zenith (green bar).

( Figure courtesy of COSMIC Program )



Zenith delay from wet and dry
components of the atmosphere
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Example of GPS water vapor time series
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Water vapor as a proxy for pressure in
storm prediction
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Modeling Antenna Phase-center Variations (PCVs)

e Ground antennas

— Relative calibrations by comparison with a ‘standard’ antenna (NGS, used by
the IGS prior to November 2006)

— Absolute calibrations with mechanical arm (GEO++) or anechoic chamber
— May depend on elevation angle only or elevation and azimuth

— Current models are radome-dependent

— Errors for some antennas can be several cm in height estimates

e Satellite antennas (absolute)
— Estimated from global observations (T U Munich)
— Differences with evolution of SV constellation mimic scale change

Recommendation for GAMIT: Use latest IGS absolute ANTEX file (absolute) with
AZ/EL for ground antennas and ELEV (nadir angle) for SV antennas

(MIT file augmented with NGS values for antennas missing from 1GS)
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Lc Phase Residual

Lc Phase Residual
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GPS for surface hydrology

* Possible to use direct surface multipath signal
to infer local vegetation growth and decay,
soil moisture and snow depth.

e http://xenon.colorado.edu/portal/
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