GPS data from receiver to processing input

M. A. Floyd T. A. Herring
Massachusetts Institute of Technology

GAMIT/GLOBK/TRACK Short Course for GPS Data Analysis
Korea Institute of Geoscience and Mineral Resources (KIGAM)
Daejeon, Republic of Korea
23–27 May 2016

Material from T. A. Herring, R. W. King, M. A. Floyd (MIT) and S. C. McClusky (now ANU)
Raw data formats

Receiver:
- Ashtech
- Leica
- Topcon
- Trimble

Raw format:
- B-file
- R-file

Pre-processing:

Translation:
- RINEX Converter*
- TEQC
- ConvertToRINEX*

RINEX file

* Windows only
Motivation for Receiver INdependent EXchange (RINEX) format

- All manufacturers have developed their own proprietary file formats for data storage specific to their receivers and processing software
 - Problems occur when processing data from another manufacturer’s receiver

- RINEX developed by the Astronomical Institute of the University of Berne to allow easy and universal exchange of raw GPS data
 - Principal driver was the large European GPS campaign EUREF 89 - involved more than 60 GPS receivers of 4 different manufacturers.
RINEX formats

• RINEX 2
 – Short file names (explained in proceeding slides)
• RINEX 3
 – Long file names (explained in proceeding slides)
• GAMIT currently works with the RINEX 2 format and GPS observables only
• Support for RINEX 3 and GNSS (e.g. GLONASS) observables are under development
RINEX (2) data format

- Includes text file formats for:
 - observation ("o") } most important for most users
 - navigation ("n")
 - meteorological ("m")
 - ionospheric data ("i")
- Latest definition at ftp://ftp.igs.org/pub/data/format/rinex211.txt
- Each file type consists of a header section and a data section
- Header section contains global information for the entire file and is placed at the beginning of the file.
 - Contains header labels in columns 61-80 for each line contained in the header section
 - These labels are mandatory and must appear exactly as per format description
- RINEX 2 filename convention:
 - For site SSSS, on day-of-year DDD, session T and year YY:
 • SSSSDDDT.YYo (RINEX observation file ie the site’s GPS data)
 • SSSSDDDT.YYn (RINEX navigation file ie the broadcast ephem)
 - E.g., hers1270.03o is observation data for Herstmonceux, day 127, session 0, year 2003.
- All the dates and times in GPST
An example of RINEX (2) observation data

<table>
<thead>
<tr>
<th>PRN</th>
<th>Time (hh:mm:ss)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Time of First Obs</th>
<th>Time of Last Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRN02</td>
<td>02 10</td>
<td>3000</td>
<td>00</td>
<td>15.000000000</td>
<td>0 9</td>
<td>2 3 8 15 17 18 22 27 31</td>
</tr>
<tr>
<td>PRN03</td>
<td>114956814.47149</td>
<td>21875546.363</td>
<td>89576741.90649</td>
<td>21875544.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN08</td>
<td>106012532.74649</td>
<td>20173505.537</td>
<td>82607201.93949</td>
<td>20173503.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN15</td>
<td>125711842.56047</td>
<td>23922167.349</td>
<td>97957288.14148</td>
<td>23922165.931</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN17</td>
<td>119238856.33248</td>
<td>22690389.725</td>
<td>92913413.33748</td>
<td>22690387.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN18</td>
<td>126647445.65347</td>
<td>24100198.242</td>
<td>98686357.86547</td>
<td>24100196.537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN22</td>
<td>115864289.86249</td>
<td>22048234.526</td>
<td>90283862.18149</td>
<td>22048231.774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN27</td>
<td>121423791.97248</td>
<td>23106173.809</td>
<td>94615957.45148</td>
<td>23106172.539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN31</td>
<td>109327695.42149</td>
<td>20804367.862</td>
<td>85190428.66449</td>
<td>20804365.462</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2016/05/23
RINEX (3) data format

- Must be able to accommodate increased number and complexity of observations from multi-GNSS observations (GPS, GLONASS, Galileo, etc.)
- Each file type consists of a header section and a data section
- Header section contains global information for the entire file and is placed at the beginning of the file.
 - Contains header labels in columns 61-80 for each line contained in the header section
 - These labels are mandatory and must appear exactly as per format description
- RINEX 3 filename convention is longer and more complicated than for RINEX 2, e.g. TG0100USA_R_20150010000_01D_30S_GO.crx.gz

- 4-character site ID (same as RINEX 2)
- Monument and receiver indices
- ISO country code
- Data source (R = receiver)
- First epoch (YYYYDDhhmm)
- File length (01D = 1 day)
- Observation interval and type
Compressing/Uncompressing RINEX

- File compression
 - “*.zip” files
 - Uncompress using “unzip”, “pkzip” or “WinZip”
 - See http://www.pkware.com/ or http://www.winzip.com/, or http://www.7-zip.org/
 - “*.??o.Z” (RINEX 2) and “*.rnx.gz” (RINEX 3) files (UNIX compress or gzip)
 - e.g., hers0010.02o.Z, TG0100USA_R_20150010000_01D_30S_GO.rnx.gz
 - Uncompress using “uncompress”, “gunzip”, “7zip”, “WinZip” or similar
 - “*.??d.Z” (RINEX 2) and “*.crx.gz” (RINEX 3) files (Hatanaka compression)
 - e.g., hers0010.02d.Z, TG0100USA_R_20150010000_01D_30S_GO.crx.gz
 - Need to uncompress as above to get *.??d and *.crx files
 - Then need to ‘unHatanaka’ using CRX2RNX from http://sopac.ucsd.edu/dataArchive/hatanaka.html
 - Leica Geo Office uncompresses files automatically when using “Internet Download” tool. For manual import you need to uncompress the files manually
runpkr00 (Trimble raw to dat)

• Proprietary software from Trimble
• Maintained by UNAVCO nowadays
 – http://facility.unavco.org/kb/questions/744/
• runpkr00 -g -adeimv <raw file> [dat-file root]
• Converts raw data from Trimble receiver to teqc-compatible input “dat”-file
• Always use “-g” option separately from other options
Pre-processing data

- Some level of data quality control may be performed prior to any data processing
- Utilities are available to perform simple but valuable tests
 - The most common example is TEQC (pronounced “tek”)
 - Translate, Edit, Quality Check
 - Translates common binary formats to RINEX format
 - Header editing, windowing, splicing of RINEX data
 - Quality check in ‘lite’ mode (no navigation file) or ‘full’ mode (navigation file available)
 - Download for free from

http://www.unavco.org/facility/software/teqc/teqc.html#executables
Using teqc

- Be sure to use correct raw format
 - teqc -tr d <Trimble .dat file>
 - teqc -ash d <Ashtech B-file, etc.>

- Ability to control observations using “-O.obs”
 - teqc -O.obs L1L2C1P2 -tr d <Trimble .dat file>

- Ability to control header information with other “-O.xxx” options
 - teqc -O.o “M. Floyd” -O.obs L1L2C1P2 -tr d <Trimble .dat file>

- May create and use a teqc configuration file for consistent information
 - teqc -config teqc.cfg -tr d <Trimble .dat file>

- Use a script or command line loop to create RINEX files in batch
TEQC

• Quality Control (QC)
 – In ‘lite’ mode, teqc doesn’t know anything about the satellite positions
 • teqc +qc site1891.02o > teqc.out
 • 7 files generated; use the -plots switch to prevent all but the summary (‘S’) file being generated
 – In ‘full’ mode, additional information is available based on the satellite positions
 • teqc +qc -nav site1891.02n site1891.02o > teqc.out
 • 9 files generated (elevation and azimuth of satellites)
 – Full solution if navigation file matches observation file, e.g. site1891.02o and site1891.02n,
 • teqc +qc site1891.02o > teqc.out
Approximate position

Accurate a priori coordinates necessary for good GPS processing

1. Run teqc to create RINEX observation and (broadcast) navigation files, e.g.

 \[\text{teqc} +\text{nav abcd3650.14n +obs abcd3650.14o -tr d 12343650.dat} \]

2. Run teqc in qc-mode on observation file with navigation file to get pseudorange-derived estimate of approximate coordinate, e.g.

 \[\text{teqc +qc -nav abcd3650.14n abcd3650.14o} \]

May also be done using GG’s \texttt{sh_rx2apr}