

Generating time series with glred

M. A. Floyd T. A. Herring

Massachusetts Institute of Technology, Cambridge, MA, USA

GNSS Data Processing and Analysis with GAMIT/GLOBK and track Virtual (online only) hosted by EarthScope 22–26 July 2024

http://geoweb.mit.edu/gg/courses/202407_EarthScope/ Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)

sh_glred

- glred is just a way of invoking globk to process one day at a time; sh_glred is a script to invoke glred easily for a sequence of days
- Once you've run sh_gamit for a sequence of days, you will have on each day an h-file of loosely constrained parameter estimates and covariances. If you have appropriately constructed command files for globk (globk.cmd) and glorg (glorg.cmd) in [expt]/gsoln/, you can obtain time series using, e.g.

```
sh_glred -expt [expt] -s [start yr] [start_doy] [stop yr] [stop doy] -opt H G T
```

which will translate the GAMIT plain text h-files into GLOBK binary h-files (H), run GLOBK (G) and run sh_plot_pos (T)

• The lectures on GLOBK and references frames will guide you in constructing the command files, and there are self-guided templates to make this easy

Manual sequence

- htoglb(i.e. sh_glred -opt H)
 - Converts plain text h-files output from GAMIT to binary h-files (in glbf/) for input to GLOBK
- ls
 - Create list of binary h-files to process (in gsoln/)
- glist
 - Create chronological list of h-files to process and associated information
- glred (i.e. sh_glred -opt G)
 - Create ".org"-file(s) with individual solutions
- sh_plot_pos (i.e. sh_glred -opt T)
 - Create ".pos" (time series) file(s) and time series plots
- globk
 - Create combined (or velocity) solution
- glorg
 - Additional glorg runs for different reference frames

htoglb

- Creates binary h-files for input to GLOBK
 - All metadata etc. carried forward from GAMIT
- Not restricted to plain text h-files from GAMIT
 - May also use SINEX (Software INdependent EXchange format), GIPSY's "stacov" files, etc.
 - But beware of constraints implicit in solutions from other software/processing runs!
- For example, from glbf/

htoglb . // ../[0-3][0-9][0-9]/h*a.*

• (Use pair of quotes " if no satellite data is to be saved. This is normal case).

GLOBK checks

- List files to be processed by GLOBK, e.g. from gsoln/ ls ../glbf/h*.glx > expt.glx.gdl
- Run pre-processing checks using glist

glist expt.glx.gdl 201407_NSFBay.sum +1 ~/gg/tables/itrf08_comb.eq:A 201407_NSFBay.gdl

- This will also calculate if any overlapping h-files should be combined with glred (e.g. multiple networks on the same day)
- Inspect any errors (e.g. site name clashes)

Create time series

• glred simply runs the main program, globk, once per interval (e.g. daily) to combine data over that interval into one solution and one effective time series point

glred 6 glred_20150811.prt glred_20150811.log 201407_NSFBay.gdl globk.cmd

- Assess solution by looking at "POS STATISTICS" lines
- Old example using sh_glred with "-opt E" creates:
 - "mb"-files (time series) with multibase
 - "psbase"-files (PostScript) with sh_baseline
- Updated, preferred method is sh_glred with "-opt T":
 - tssum to create ".pos"-files (time series) from ".org"-file output from glred
 - sh_plot_pos to create PostScript plots
 - ".org"-file may be input to sh_plot_pos, which will run tssum for you, e.g. sh_plot_pos -f glred_YYYYMMDD.org -d _YYYYMMDD...

Time series solution files

Old scheme

- ".org"-file
- ensum
 - "VAL"-file (time series values)
 - "SUM"-file (statistics)
- multibase
 - "mb"-files
- sh_baseline
 - Time series plots
- → sh_plotcrd

Current scheme

- ".org"-file
- •tssum
 - ".pos"-files
 - tsfit
 - ".res"-files
- sh_plot_pos
 - Time series plots

sh plot pos 🛩

Recommended strategy for stabilization

- In the template files, globk.cmd and glorg.cmd:
 - default apr-file is ~/gg/tables/igb14_comb.apr
 - default eq-file is ~/gg/tables/igb14_comb.eq
 - default stab-file is ~/gg/tables/igb14_comb.stab_site
- igb14_comb.apr is a combined .apr-file, using many publicly available coordinate sources, all aligned to ITRF2014
- igb14_comb.eq is the associated .eq-file with defined discontinuities
 - equipment changes
 - earthquakes
 - etc.
- igb14_hierarchy.stab_site uses the established IGS core network hierarchy to choose stabilizing sites, e.g.
 - stab_site_DRAO/BREW/NANO/ALBH/HOLB means use DRAO if available in the solution (e.g. h-files), otherwise use BREW if available, otherwise use NANO, etc.
- Equivalent files for previous realizations of ITRF2014 ("itrf2014...", "igs14...") and ITRF2008 ("itrf08...", "igb08...") still available

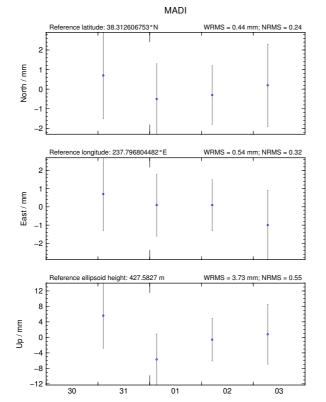
Inspect consistency of stabilization statistically

- It is a good idea to have thought about your reference frame stabilization when setting up your experiment, e.g. sites.defaults, before running sh_gamit
- Desire as many well-defined (e.g. IGS) sites as possible for redundancy
 - Recommended to use some of the sites (preferring the first column) in ~/gg/tables/igb14_hierarchy.stab_site when selecting your processing network, e.g. additional sites listed in your sites.defaults
 - But remember trade-off with processing time, e.g. processing time scales proportionally to n^3

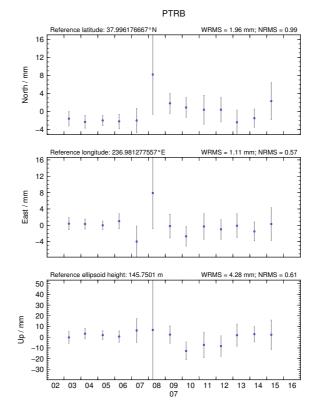
POS STATISTICS: For	51 RefSites WRMS ENU	2.15	2.55	6.19 mm	NRMS ENU	0.71	0.84	0.63 L0104260000_tg1a.glx
POS STATISTICS: For	54 RefSites WRMS ENU	2.17	2.42	6.03 mm	NRMS ENU	0.74	0.80	0.63 L0104270000_tg1a.glx
POS STATISTICS: For	50 RefSites WRMS ENU	2.12	2.25	6.34 mm	NRMS ENU	0.71	0.75	0.67 L0104280000_tg1a.glx
POS STATISTICS: For	54 RefSites WRMS ENU	2.19	2.31	5.23 mm	NRMS ENU	0.80	0.81	0.58 L0104300000_tg1a.glx
POS STATISTICS: For	54 RefSites WRMS ENU	1.83	2.17	6.34 mm	NRMS ENU	0.64	0.75	0.68 L0105010000_tg1a.glx
POS STATISTICS: For	54 RefSites WRMS ENU	2.09	2.63	6.47 mm	NRMS ENU	0.80	0.98	0.75 L0105020000_tg1a.glx

grep '^POS S' glred 20150811.org

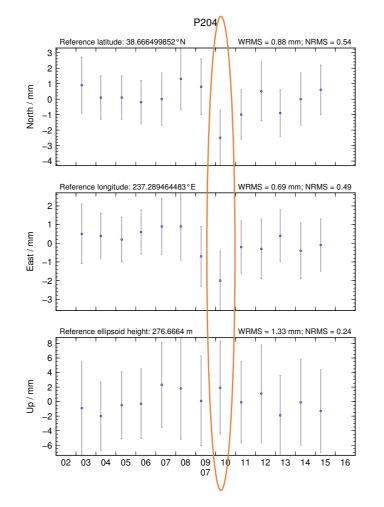
".pos"-files

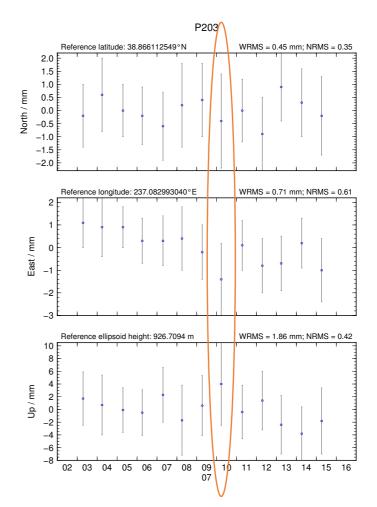

- These contain your time series solution
- Long format in various coordinate systems
 - Geocentric (X, Y, Z)
 - Geodetic (lon., lat., height)
 - Local (east, north, up)
- Can be input to tsfit (interactive version of GGMatlab tool "tsview"), sh_cats (requires CATS) and sh_hector (requires Hector)
- Both ".pos"-files and ".res"-files can be plotted with sh plot pos

sh_plot_pos


- Uses GMT and has many features including options to:
 - Read in ".org"-files, ".pos"-files (output of tssum) and ".res"-files (output of tsfit) [-f option]
 - Run tsfit (GLOBK's curve-fitting module) on input ".pos"-files [-t option]
 - Calculate basic statistics (e.g. WRMS, NRMS)
 - Add vertical lines at epochs specified by renames, earthquakes or user [-b, -e and -1 options, respectively]
 - Specify fixed start and end times of time series [-t1, -t2 options]
 - etc.

Inspect consistency of time series


Good repeatability



Outlier

Some "outliers" may be stability issues

Excluding outliers or segments of data

 Create "rename" file records and add to GLOBK command file's "eq_file" option, e.g.

rename PTRB	PTRB_XPS	h1407	7080)61(D_nk	o4a					
rename PTRB	PTRB_XPS	2014	07	07	18	00	2014	07	80	18	30
rename ABCD	ABCD_XCL	2013	07	08	00	00					

- "XPS" will not exclude data from glred (so still visible in time series) but will exclude data from globk (combination or velocity solution)
- "XCL" will exclude data from all glred and globk runs

Iterating your solution

- First time series may only be stabilized by previously well-defined sites, e.g. ITRF sites
- Once a high-quality position (and velocity) estimate for a previously unknown or new site is available, we can use all sites to stabilize
- This approach may be used with both time series (e.g. glred) and velocity (e.g. globk) solutions

Short- vs long-term time series

- Exactly the same procedure is used for short (e.g. survey) and long (e.g. years of continuous data) time series
- The only difference may be the number and type of input h-files, e.g.
 - Daily survey h-files (short-term time series)
 - Combine into one solution (short-term position combination)
 - Several combined survey files over years (long-term time series)
 - Several combined survey files over years (long-term velocity combination)

tsfit and tsview

- tsfit is the command-line tool for fitting time series and generating statistics
 - Input ".pos"-files, optionally .eq-files
 - Fits linear rate and choice of common parameters
 - Periodic terms
 - Discontinuities and earthquakes
 - Post-seismic decays
 - Outputs
 - statistics of fit
 - standard (position and velocity) .apr-files
 - extended (periodic, logarithmic decay, etc.) .apr-files
 - Residuals to fit (".res"-files)

• tsview is an alternative that, via a MATLAB interface, allows interaction

Summary

- sh_glred is post-processing equivalent to sh_gamit
- .pos-file format now standard GLOBK output for time series
- Visual inspection of time series very important for identifying outliers, bad segments of data or other problems like incompatible site IDs
 - sh_plot_pos (GMT) and tsview (MATLAB)
 - Populate .eq-file(s) with "rename" commands or use "sig_neu" commands to mitigate impact of poor or incompatible data points during velocity
 - Be aware that some "outliers" may be stabilization issues if they persist across a large part or all of a network at the same time, so check stabilization using "POS STATISTICS" lines in .org-file(s)
 - Numbers of stabilizing sites should be consistent and at least as many as the number of parameters estimated in glorg (e.g. three components of rotation and translation)
 - Numbers for wrms should be consistent from day-to-day and small (< 5 mm)
- Batch tools are available for longer, denser, continuous time series where point-by-point visual inspection is unreasonable
 - tsfit and tsview