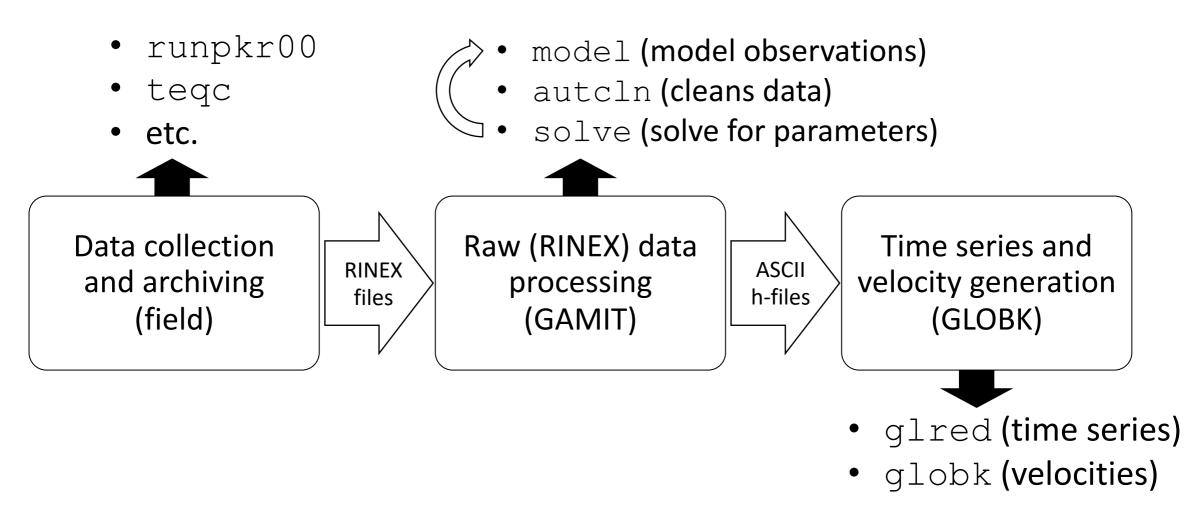


Basics of processing workflow for GAMIT/GLOBK

M. A. Floyd T. A. Herring

Massachusetts Institute of Technology, Cambridge, MA, USA


GNSS Data Processing and Analysis with GAMIT/GLOBK and track Virtual (online only) hosted by EarthScope 22–26 July 2024

http://geoweb.mit.edu/gg/courses/202407_EarthScope/ Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)

Structure

- The scripts that control GAMIT and GLOBK all have a built-in help page which can be evoked by entering command name only or looking in ~/gg/help/
 - ~/gg/com/ contains all of the scripts used
 - ~/gg/gamit/bin/ and ~/gg/kf/bin/ contain the program executables
 - (gg is a link in your home directory that points to the directory with the GAMIT/GLOBK software installed and should not be removed)
- Once the software is installed, user selects data to be processed over some interval of time and uses sh gamit for the processing
- GLOBK is used after the daily processing to combine results and set the reference frame
- Everyone should have completed the installation of the software at this point
- Running the example case is a good idea to make sure installation was successful

Basic stages of GAMIT/GLOBK for geoscience

Basic inputs and outputs

- RINEX data must be prepared for input to GAMIT
- Output from GAMIT are ASCII (text) "h"-files
 - Loosely constrained solutions with a priori parameter information, parameters adjustments and full covariance matrices
- Input to GLOBK are binary version of h-files
 - Convert from ASCII to binary h-files using htoglb (or ``-opt H" option in sh_glred)
- Final output of GLOBK is ".org"-file, which contains all information for
 - Time series (".pos"-files)
 - and/or
 - Velocities (".vel"-files)

GAMIT

- Run sh_setup
 - Check all links, especially to grid files (otl.grid, atl.grid, map.grid, met.grid; see sestbl. for what is "switched on")
- Place RINEX data to be processed in rinex/ directory
 - Except any publicly-available RINEX files one has set to be downloaded in sites.defaults
- Prepare and verify station.info, e.g. sh_upd_stnfo
- Prepare and verify apr-file, e.g. sh_rx2apr
- Run sh_gamit

sh_gamit

- sh_gamit is the main script for running GAMIT
- The following files are important to verify and/or edit (e.g. after sh_setup)
 - autcln.cmd (probably unnecessary to edit)
 - process.defaults (not necessary to edit much, if anything)
 - sestbl. (controls experiment observations and models; defaults OK but may want to edit)
 - sites.defaults (list of sites to process in experiment)
 - sittbl. (controls a priori constraints on sites; probably unnecessary to edit)
 - station.info (very important file to get right)
 - .apr-file (*very* important file to get right)
- More detail in following lecture

Phase data processing: GAMIT

- Preprocessing
 - Download (sh get orbits) and prepare (sh sp3fit) orbits
 - Make clock files (makej)
 - Download publicly available sites (sh_get_rinex) and convert RINEX files to GAMIT internal format for phase-and-pseudorange observations (makex)
 - Write batch ("b") files
- Iterative solution (run b-files)
 - Calculate synthetic observations from a priori parameters and models (model)

 - Create observables (LC, L1+L2, etc.), clean data (autcln)
 Fit calculated to observed by solving for parameter estimates (solve)
 - Update a priori information if large adjustments
- All the above command steps are run for the user by sh gamit
 - Although preparation of orbits (sh_get_orbits/sh_sp3fit) and RINEX files (sh_get_rinex) often done manually, depending on resources

Post-processing: GLOBK

- Convert ASCII h-files to binary h-files (htoglb in glbf/)
- Generate and chronological list of binary h-files (glist in gsoln/)
- At this point, diverge in approach depending on solution sought
 - More details about glred, globk and glorg in following lectures
- Similarly to sh_gamit, the batch script sh_glred will run all of the above command steps (and more, introduced in next slides)
 - User may just need to edit globk and/or glorg command files to achieve most desired types of solution

GLOBK short-term combinations

- Combine days from a period over which velocities are negligible, e.g. a 10day survey, bi-weekly or monthly combinations for continuous GNSS
 - Reduces short-term scatter
 - Reduces number of files to be carried forward to velocity solution
- Run glred to generate time series
- Plot time series (sh_plot_pos)
- Inspect time series to identify (and remove) outliers
- Run globk to form one solution file for survey (".org"-file) without velocity estimation, e.g. in globk command file:
 apr_site all 10 10 10 0 0 0
 or
 apr neu all 10 10 10 0 0 0

GLOBK long-term velocities

- Combine daily (continuous) or short-term combined h-files (e.g. surveys; see last slide)
- Plot long-term time series from short-term combination ".org"-file(s) (sh_plot_pos)
- Inspect time series to identify (and remove) outliers
- Run globk to form final solution file for all data (another ".org"-file) with velocity estimation, e.g. in globk command file apr_site all 10 10 10 1 1 1 or apr_neu all 10 10 10 1 1 1
- sh_glred capable of running all these individual commands to produce time series, short-term combinations and long-term velocity solutions