

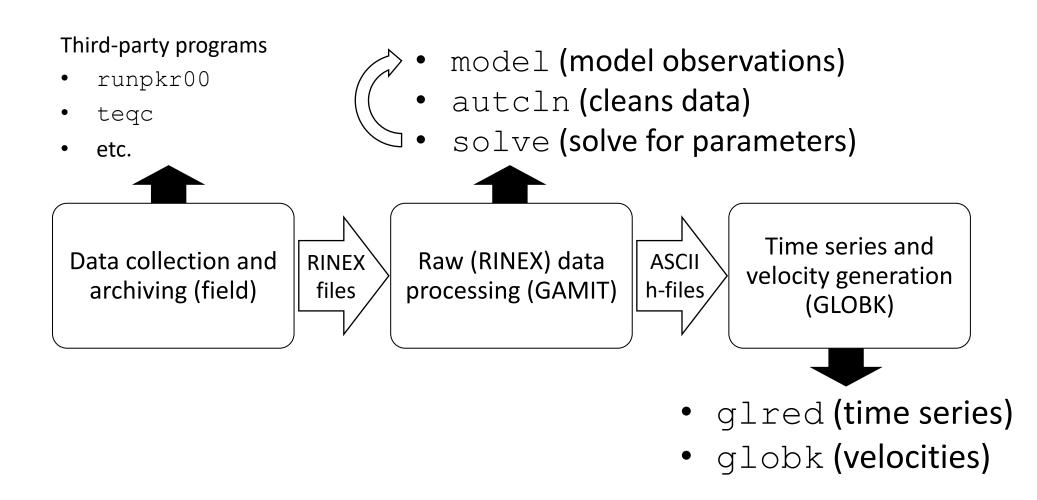




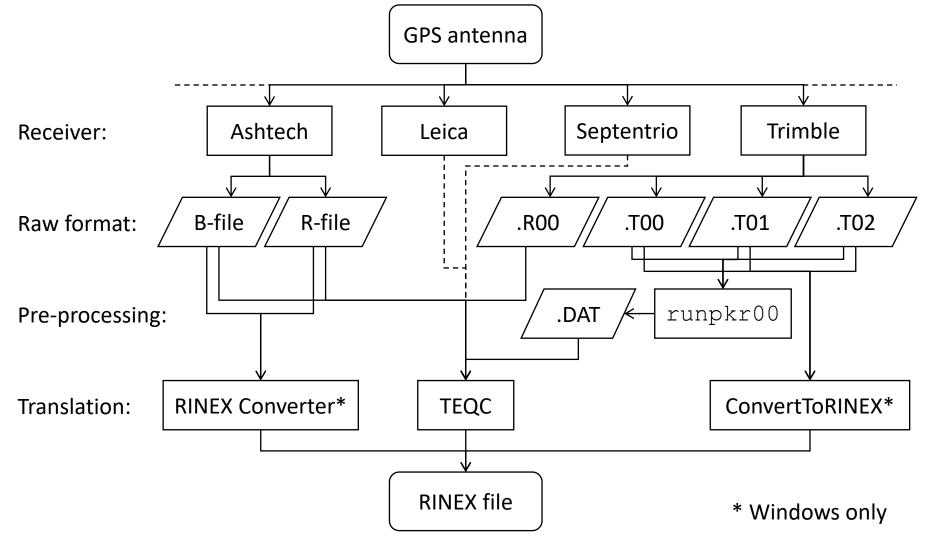
## GAMIT/GLOBK In A Day

#### M. Floyd and T. Herring

Massachusetts Institute of Technology


GAGE/SAGE 2023 Community Science Workshop Pre-Workshop Short Course 26 March 2023

http://geoweb.mit.edu/gg/courses/202303\_GAGE-SAGE/


Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)

# GNSS data from receiver to processing input

## Basic stages of GAMIT/GLOBK for geoscience

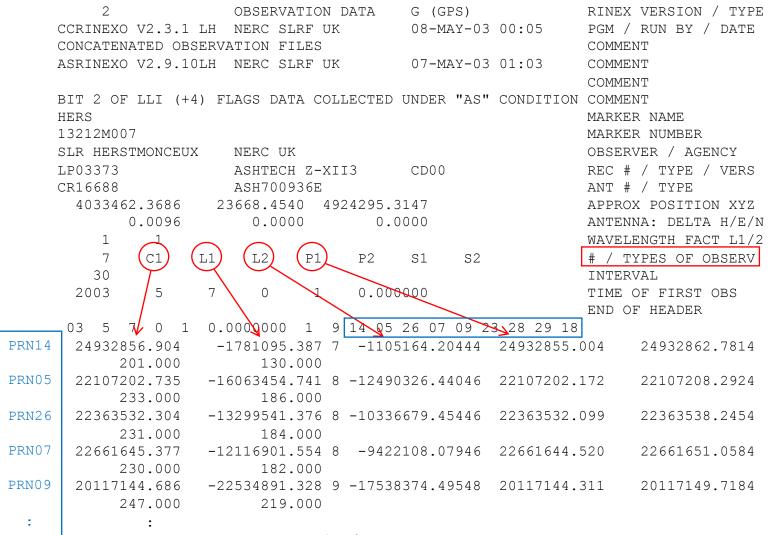


#### Raw data formats



## Motivation for Receiver INdependent EXchange (RINEX) format

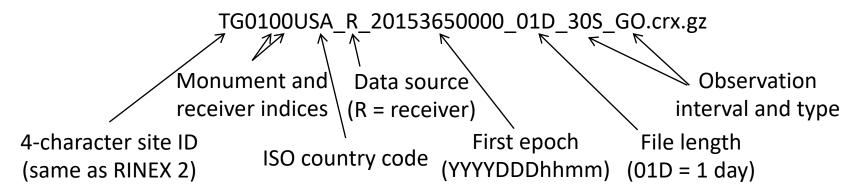
- All manufacturers have developed their own proprietary file formats for data storage specific to their receivers and processing software
  - Problems occur when processing data from another manufacturer's receiver
- RINEX developed by the Astronomical Institute of the University of Berne to allow easy and universal exchange of raw GPS data
  - Principal driver was the large European GPS campaign EUREF 89 involved more than 60 GPS receivers of 4 different manufacturers.


#### **RINEX** formats

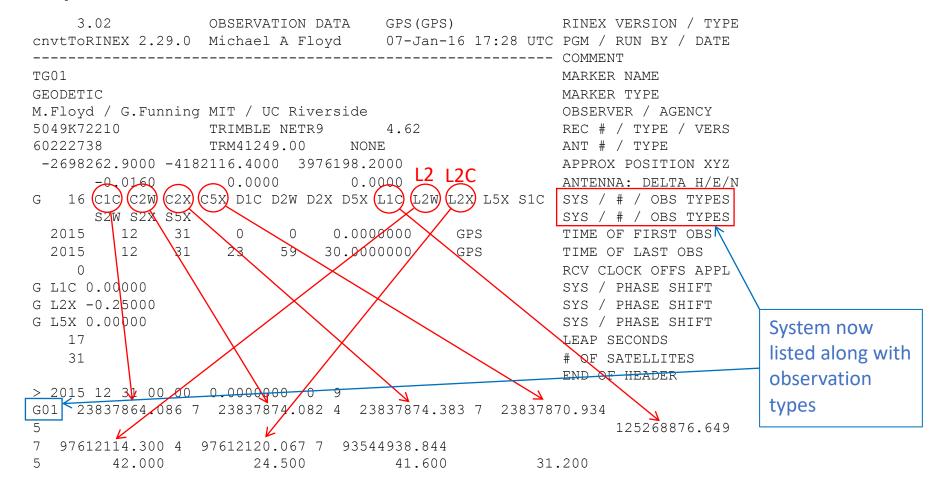
- RINEX 2
  - Short file names (explained in following slides)
- RINEX 3 and RINEX 4
  - Long file names (explained in following slides)
- GAMIT formerly worked with the RINEX 2 format and GPS observations only
- Support for RINEX 3/4 and GNSS (e.g. Galileo, BeiDou, etc.) observations are available with GAMIT/GLOBK 10.61 and later
  - But RINEX 3/4 files need to be renamed, copied or linked with a RINEX 2 file name convention to be used (e.g. sh\_rename\_rinex3)

### RINEX 2 data format

- Includes text file formats for:
  - observation ("o")
    navigation ("n")
- } most important for most users
- meteorological ("m")
- ionospheric data ("i")
- Latest definition at https://files.igs.org/pub/data/format/rinex211.txt
- Each file type consists of a header section and a data section
- Header section contains global information for the entire file and is placed at the beginning of the file.
  - Contains header labels in columns 61–80 for each line contained in the header section
  - These labels are mandatory and must appear exactly as per format description
- RINEX 2 filename convention:
  - For site "ssss", on ordinal date (day-of-year) "ddd", session "t" and year "yy":
    - ssssdddt.yyo (RINEX observation file, i.e. the site's phase and code records)
    - ssssdddt.yyn (RINEX navigation file, i.e. the broadcast ephemeris)
  - e.g., hers1270.030 is observation data for Herstmonceux, day 127, session 0, year 2003
- All dates and times in GPST


#### An example of RINEX 2 observation data




2023/03/26

### RINEX 3/4 data format

- Must be able to accommodate increased number and complexity of observations from multi-GNSS observations (GPS, GLONASS, Galileo, BeiDou, etc.)
- Latest definition at https://files.igs.org/pub/data/format/rinex305.pdf or https://files.igs.org/pub/data/format/rinex\_4.00.pdf
- Each file type consists of a header section and a data section
- Header section contains global information for the entire file and is placed at the beginning of the file.
  - Contains header labels in columns 61–80 for each line contained in the header section
  - These labels are mandatory and must appear exactly as per format description
- RINEX 3/4 filename convention is longer and more complicated than for RINEX 2, e.g.



#### An example of RINEX 3/4 observation data



Observation codes more complicated than RINEX 2 (see Tables 4–10 of current RINEX 3(.05) document)

## Compressing/Uncompressing RINEX

#### • File compression

- "\*.zip" files
  - Unzip using "unzip", "pkzip" or "WinZip"
  - See http://www.pkware.com/ or http://www.winzip.com/, or http://www.7-zip.org/
- "\*.??o.Z" (RINEX 2) and "\*.rnx.gz" (RINEX 3) files (UNIX compress or gzip)
  - e.g., hers1270.03o.Z, TG0100USA\_R\_20153650000\_01D\_30S\_GO.rnx.gz
  - Uncompress using "uncompress", "gunzip", "7zip", "WinZip" or similar
- "\*.??d.Z" (RINEX 2) and "\*.crx.gz" (RINEX 3) files (Hatanaka compression)
  - e.g., hers1270.03d.Z, TG0100USA\_R\_20153650000\_01D\_30S\_GO.crx.gz
  - Need to uncompress as above to get \*.??d and \*.crx files
  - Then need to "unHatanaka" using CRX2RNX from http://terras.gsi.go.jp/ja/crx2rnx.html
- Leica Geo Office uncompresses files automatically when using "Internet Download" tool
  - For manual import you need to uncompress the files manually

### runpkr00 (Trimble raw to dat)

- Proprietary software from Trimble
- Maintained by UNAVCO nowadays
  - http://facility.unavco.org/kb/questions/744/
- Converts raw data from Trimble receiver to teqc-compatible input "dat"-file, e.g. runpkr00 -g -adeimv <raw file> [dat-file root]
- Always use "-g" option and separately from other options

#### Pre-processing data

- Some level of data quality control may be performed prior to any data processing
- Utilities are available to perform simple but valuable tests
  - The most common example is TEQC (pronounced "tek")
    - Translate, Edit, Quality Check
    - Translates common binary formats to RINEX format
    - Header editing, windowing, splicing of RINEX data
    - Quality check in "lite" mode (no navigation file) or "full" mode (navigation file available)
    - Download for free from http://www.unavco.org/facility/software/teqc/teqc.html#executables

### Using teqc

- Be sure to use correct raw format teqc -tr d <Trimble .dat file> teqc -ash d <Ashtech B-file, etc.>
- Ability to control observations using "-O.obs" option teqc -O.obs L1L2C1P2 -tr d <Trimble .dat file>
- Ability to control header information with other "-O.xxx" options teqc -O.o "M. Floyd" -O.obs L1L2C1P2 -tr d <Trimble .dat file>
- May create and use a teqc configuration file for consistent information teqc -config teqc.cfg -tr d <Trimble .dat file>
- Use a script or command line loop to create RINEX files in batch

## Using teqc

- Quality Control (QC)
  - In "lite" mode, teqc doesn't know anything about the satellite positions teqc +qc site1891.020 > teqc.log
    - 7 files generated; use the -plots option to prevent all but the summary ('S') file being generated
  - In "full" mode, additional information is available based on the satellite positions

```
teqc +qc -nav site1891.02n site1891.02o > teqc.log
```

- 9 files generated (elevation and azimuth of satellites)
- Full solution if navigation file matches observation file, e.g. site1891.020 and site1891.02n

```
teqc +qc site1891.02o > teqc.log
```

#### **RINEX 3 translation**

- teqc is not designed for RINEX 3/4
- Other programs are often available direct from the manufacturer, e.g. Trimble's ConvertToRINEX

#### Site ID clashes

- When naming a new site, check against lists of known site IDs to avoid clashing, e.g.
  - IERS station list (https://itrf.ign.fr/doc\_ITRF/iers\_sta\_list.txt)
  - UNAVCO Data Archive Interface (https://www.unavco.org/data/dai/)
  - SOPAC Check Site ID (http://sopac.ucsd.edu/checkSiteID.shtml)
- If you have a site that is already named and clashes with a known site that is contained in GAMIT/GLOBK's default tables, e.g. station.info or igb14\_comb.apr, then just be sure that the site information you intend to use is in the copy of the tables in your processing directory (more in later slides)

#### Site identification errors



#### Antenna setup errors

- Episodic survey setups can mean that measurements are not centered perfectly over a mark or the antenna height not measured accurately
- Note any inconsistencies for metadata files or later correction
- This can also happen for continuous sites, where incomplete, inaccurate or missing maintenance records



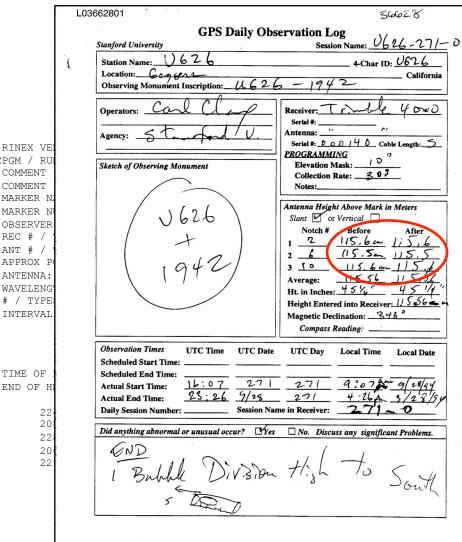
### Log (metadata) and archive errors

#### Critical: antenna type (serial #); height and type; monument ID

| 2.10               | OBSERVATION     | DATA     | G (GPS)             | RINEX VE   |
|--------------------|-----------------|----------|---------------------|------------|
| teqc 2006Jul20     | UNAVCO Archi    | ve Ops   | 20060725 16:48:29UT | CPGM / RUI |
| Solaris 5.9 Ultras | Sparc IIi cc -x | arch=v9  | SC5.5 =+- *Sparc    | COMMENT    |
| BIT 2 OF LLI FLAGS | 5 DATA COLLECTE | D UNDER  | A/S CONDITION       | COMMENT    |
| U626               |                 |          |                     | MARKER N   |
| U626               |                 |          |                     | MARKER N   |
| UNKNOWN            | Stanford Uni    | versity  |                     | OBSERVER   |
| 3414A05687         | TRIMBLE 4000    | SSE      | NP 5.71 / SP 1.26   | REC # / 1  |
| 3015A00136         | TRM14532.00     |          |                     | ANT # / '  |
| -2683218 3014 -41  | 85018.7102 39   | 83204.93 | 361                 | APPROX P   |
| 1.4755             | 0.0000          | 0.00     | 000                 | ANTENNA:   |
| 1 1                |                 |          |                     | WAVELENG   |
| 5 L1 L2            | 2 C1 P1         | P2       |                     | # / TYPE   |
| 30.0000            |                 |          |                     | INTERVAL   |
|                    |                 |          |                     |            |
|                    |                 |          |                     |            |
|                    |                 |          |                     |            |

7 30.000000

GPS


| 94 | 9    | 28  | 16   | 73  | 0.000 | 0000  | 0      | 5G | 5G  | 6G17G20  | G24 |
|----|------|-----|------|-----|-------|-------|--------|----|-----|----------|-----|
| 2  | 243  | 747 | 7.48 | 856 | 1793  | 2564  | . 3935 | 55 | 224 | 128902.4 | 774 |
|    | -54  | 322 | 6.77 | 657 | -40   | 2556  | .8225  | 56 | 208 | 334866.1 | 484 |
|    | -56  | 750 | 9.56 | 556 | -37   | 1824. | .3715  | 55 | 228 | 360949.9 | 614 |
|    | 1203 | 305 | 7.74 | 657 | 88    | 3752  | .1205  | 57 | 206 | 512879.2 | 734 |
|    | 79   | 313 | 8.12 | 755 | 50    | 1650. | . 8235 | 55 | 229 | 928979.6 | 334 |

16

1994

9

28



TIME OF

#### Prepare metadata

- Many user issues can be traced back to poor quality control of metadata (e.g. site information) or approximate coordinates
- Take time to ensure that information from the field or other site installation logs is included and formatted correctly for GAMIT
- This mostly concerns two files:
  - station.info contains information about site ID, antenna, receiver, antenna height, and start and stop times)
  - An a priori coordinate file, sometimes called the "I-file", contains the approximate positions, and should be complete and accurate (to within at least a few m) for all sites

#### station.info

- Metadata of sites around the globe for which we know accurate information is listed in ~/gg/tables/station.info
- Using the script sh\_upd\_stnfo, we can:
  - Truncate this file only to include the sites we intend to process, using the list written to tables/sites.defaults
  - Add sites from a variety of standard sources, e.g. the RINEX file header, assuming it is accurate, or IGS logs for publicly available global sites
- We can also add sites metadata manually, taking care to align columns exactly using whitespace characters (not tabs)

#### a priori coordinates file

- Coordinates of sites around the globe for which we know accurate coordinates are listed in ~/gg/tables/igb14\_comb.apr
  - This will be combined with whatever other file you list with "set aprf =" in tables/process.defaults, which is the file in which you may put your sites' approximate coordinates
- We already saw one way of calculating an approximate position from RINEX data for unknown sites, using teqc
- GAMIT/GLOBK also has utilities to help with this
  - sh\_rx2apr
  - rx2apr
- sh\_rx2apr reads a RINEX 2 file (RINEX 3/4 currently not supported) and a broadcast ephemeris (satellite position) file, e.g.
  - sh\_rx2apr -site abdc1000.210 -nav brdc1000.21n
  - brdc1000.21n can be downloaded with "sh\_get\_nav -yr 2021 -doy 100"
- It can also perform a relative calculation for greater accuracy using a reference site with known coordinates, e.g.
  - sh\_rx2apr -site abdc1000.21o -nav brdc1000.21n -ref monp1000.21o -apr ~/gg/tables/igb14\_comb.apr

#### Additional models and corrections

- Other than the information provided by the user and within the default tables in the GAMIT/GLOBK distribution, some additional files must be downloaded separately due to their size
- These are generally grid files of ocean tide loading, atmospheric loading and atmospheric delay models
- Download the required file(s) from ftp://everest.mit.edu/pub/GRIDS/ to a ~/gg/GRIDS/ directory
  - Symbolic links in ~/gg/tables/ will then be complete automatically

#### Links to software

• runpkr00

http://kb.unavco.org/kb/article/trimble-runpkr00-v5-40-latest-version-mac-osx-10-7-windows-xp-7-linux-solaris-744.html

#### • RINEX Converter

ftp://ftp.ashtech.com/Spectra-precision/Utility%20Software/RINEX%20Converter/

• TEQC

https://www.unavco.org/software/data-processing/teqc/teqc.html

#### ConvertToRINEX

http://www.trimble.com/support\_trl.aspx?Nav=Collection-40773&pt=Trimble RINEX