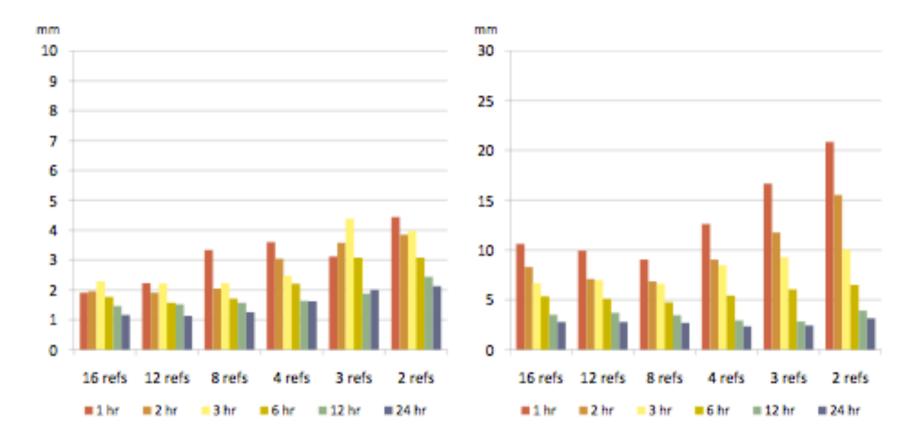


Survey-mode measurements and analysis

T. A. Herring M. A. Floyd R. W. King Massachusetts Institute of Technology, Cambridge, MA, USA UNAVCO Headquarters, Boulder, Colorado, USA 19–23 June 2017

http://web.mit.edu/mfloyd/www/courses/gg/201706_UNAVCO/

Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)


Measurement strategies I Occupation time

- Given time and personnel constraints, what are the trade-offs between between spatial and temporal density?
- Ideally, you would like for the white noise position uncertainty for an occupation to contribute to the velocity uncertainty at a level less than the usually dominant long-period correlated noise
- Typical white noise uncertainties (horizontal and vertical) as a function of occupation time are:
 - 6–8 hrs: 2–2.5 mm (H), 5–10 mm (V)
 - 12–24 hrs: 1.0–1.5 mm (H), 3–5 mm (V)
 - 36–48-hrs: 0.7–1.0 mm (H), 2–4 mm (V)
- Observations over 3 or more days will give you more redundancy
- Observations of 5 or more days will be necessary for mm-level vertical uncertainties
- If your region has few continuous stations, you should consider running one or two survey-mode stations for the entire time of the survey to provide continuity

Precision v session length for network processing

horizontal repeatability

vertical repeatability

Measurement strategies II Monuments and instrumentation

- Issues in site and antenna selection:
 - Monument identification
 - Monument stability
 - Accessibility
 - Ease of setup
 - Multipath
 - Log (metadata) errors
 - Vandalism
- There is no clear prescription for all cases

Let's look at some examples...

Three primary mounting options

Spike mount

Mast

Tripod with optical or physical plummet

Courtesy UNAVO web page

Site VELA in the Soloman Islands.

Tech 2000 kit.

2017/06/21

Survey-mode measurements and analysis

Surveyor's tripod

- Advantages:
 - Easily portable
 - Stable on flat ground
- Disadvantages:
 - Inconsistent height setup (variable multipath)
 - Easily disturbed

http://facility.unavco.org

Fixed-height mast (e.g. Tech2000)

- Advantages:
 - Automatically centered
 - Fixed height (reduces human error)
 - Stable
 - Identical multipath environment each setup
- Disadvantages:
 - Difficult first-time placement due to anchor installation (also requires large, hard surface)

Spike mounts

- Advantages:
 - Fixed height
 - Low height reduces horizontal centering inaccuracy if slightly off level
 - Easily hidden from vandals
- Disadvantages:
 - Awkward to level precisely and orientate antenna
 - Proximity to ground may increase direct multipath signal

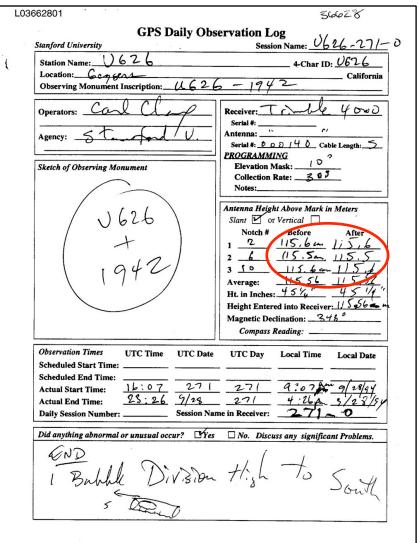
http://facility.unavco.org

Examples of survey marks

Site identification errors

Antenna setup errors

- Episodic survey setups can mean that measurements are not centered perfectly over a mark or the antenna height not measured accurately
- These measurements tend to exhibit an independent and random nature

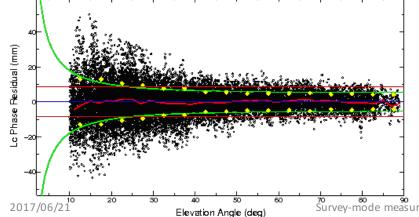


Log (metadata) and archive errors

Critical: antenna type (serial #); height and type; monument id

2.10 teqc 2006Jul20 Solaris 5.9 UltraS BIT 2 OF LLI FLAGS	parc IIi cc -x	ve Ops arch=v9	· · · -	RINEX VE TCPGM / RU COMMENT COMMENT
U626				MARKER N
U626				MARKER N
UNKNOWN	Stanford Uni	versity		OBSERVER
3414A05687	TRIMBLE 4000	SSE	NP 5.71 / SP 1.26	REC # /
3015A00136	TRM14532.00			ANT # /
-2683218.3014 -41	85018.7102 39	83204.93	361	APPROX P
1.4755	0.0000	0.00	0 0	ANTENNA:
1 1				WAVELENG
5 L1 L2	C1 P1	P2		# / TYPE
30.0000				INTERVAL

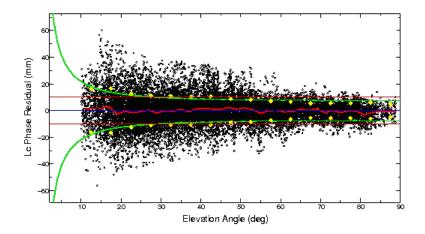
19	994		9		28		16		7		30.	000	000	00		GPS	TIME OF END OF H
94	9	28	16	7	30	.00	0000	00	0	5G	5G	6G	170	200	G24		
2	437	747'	7.48	85	6	179	9256	54.	393	55	22	428	390	2.4	774		22
-	548	3220	5.77	65	7	-4	0255	56.	822	56	20	834	186	6.1	484		20
-	567	7509	9.56	556	6	-3	7182	24.	371	55	22	860	94	9.9	614		22
1	203	305	7.74	65	7	88	3375	52.	120	57	20	612	879	9.2	734		20
	793	3138	8.12	275	5	50)165	50.	823	55	22	928	979	9.63	334		22



Low mount in a good environment

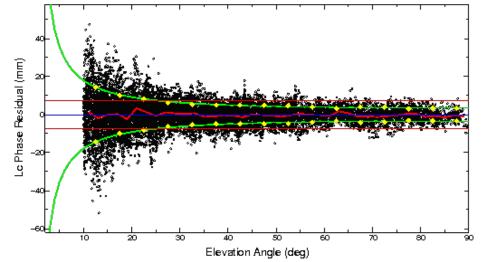
STVP Steven's Pass, Cascades Range in western Washington

18-cm spike mount



No long-term repeatability yet, but 44 hrs of observations in 2012 give formal uncertainties 0.5 mm horizontal, 3 mm vertical. Note minimal long-period signal Scattering.

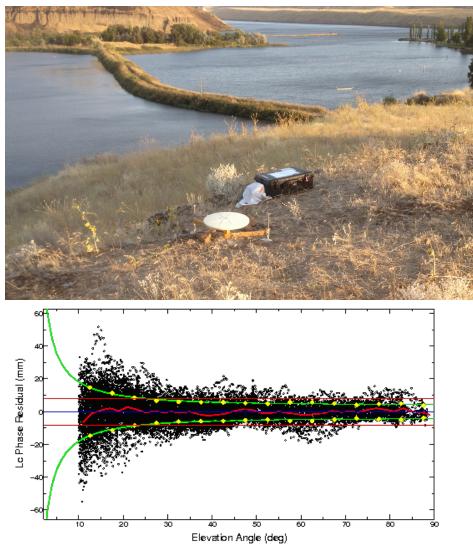
Low mount in a dirty environment


B059 Roadside meadow in western Washington 12.5-cm spike mount

Two 24-hr measurements in 2012 agree at 1 mm horizontal, 4 mm vertical though the formal uncertainties are 2 mm, 10mm due to high random noise (diffuse multipath or water vapor?) Note minimal long-period signal scattering. Long-term scatter is 3 mm horizontal, 5 mm vertical (monument instablity?)

High mount in a dirty environment

C033


Old survey mark in dirt in central Washington. Tripod mount. (Train blockage was shortlived)

2012 19-hr session and 5hr session agree at 1.5 mm horizontal, 3 mm vertiical. Long-term repeatability 2 mm horizontal, 12 mm vertical.

Surprisingly little shortperiod multipath (dry dirt?)

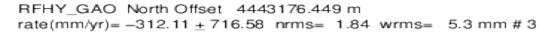
Survey-mode measurements and analysis

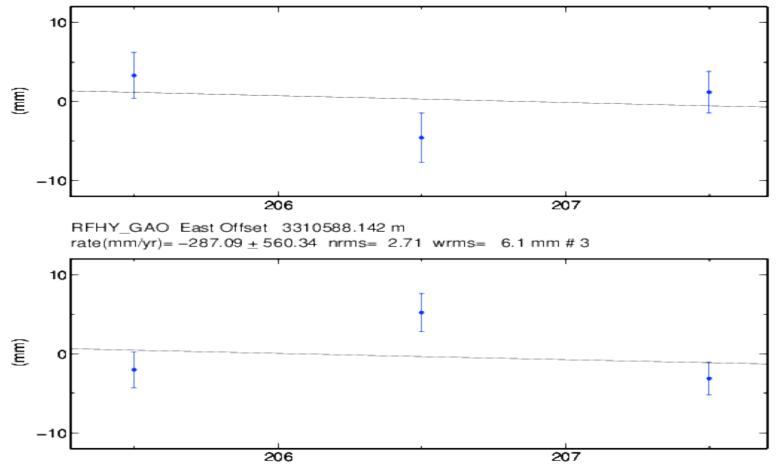
Low mount on a slope

LYFR Rocky river bank in eastern Oregon 12.5-cm spike mount

Single 14-hr session . Longperiod multipath due to slope and/or reflective rocks ?

2017/06/21


Special characteristics of survey-mode data


- Editing is critical: every point counts
- Usually combined with cGNSS data to provide continuity and a tie to the ITRF
- Appropriate relative weighting needed in combining with cGNSS data
- Antenna meta-data may be more complicated
- Heights may be problematic if different antennas used
- Seasonal errors behave differently than in cGNSS data: best strategy is to observe at the same time of the year (unlike cGNSS, which has minimal seasonal sensitivity at 1.5, 2.5, 3.5years total span)

Analysis strategy

- Generate time series and aggregated h-files for each survey
 - Use spans less than ~ 20 days to avoid biasing the position estimate from an in correct a priori velocity
 - Include cGNSS data only on days when sGNSS data are available to maintain common-mode cancellation
 - Aggregration of sGNSS positions estimate within each survey to allow better assessment of the long-term statistics
 - Edit carefully the daily values within each span
- Generate time series and a velocity using the aggregated h-files from a span of 3 or more years
 - Edit carefully the long-term time series
 - Add 0.5 of white noise ("sig_neu") to the cGNSS estimates from each span to avoid overweighting the cGPS position estimates
 - Use a separate (e.g. PBO) analysis of the daily cGNSS time series to get the appropriate RW ("mar_neu") values for each cGNSS site, then use the median RW for the sGNSS sites
- See sGPS_recipe.txt for detailed commands

Editing example

