mmm Massachusetts i85 Newcastle % . . e A/. —
Institute of : . A8¢ University of 1
II|" Technology gy UPLVETSity BRISTOL 5% COMET+ A
vugLeo

Extraction of
atmospheric parameters

M. Floyd K. Palamartchouk

Massachusetts Institute of Technology Newcastle University

GAMIT-GLOBK course
University of Bristol, UK
12-16 January 2015

Material from R. King, T. Herring, M. Floyd (MIT) and S. McClusky (now ANU)



Severe meteorological conditions

e QOther factors to consider:

— Rapid change in atmospheric pressure affects (dry) hydrostatic
delay (mostly function of pressure and temperature)

* Low pressure reduces ZHD, possibly making site appear higher
(consider position constraint)

e BUT, also reduces atmospheric loading, which physically raises site
position (~ 0.5 mm/hPa)

* BUT, additional loading due to raised sea-level (“inverted barometer”)
physically lowers site position proportionally near coasts

— Heavy rainfall creates short-term, unmodelled surface loading
— Storm surge creates short-term, unmodelled ocean loading
* Additional loading physically lowers site position

 How to deconvolve competing physical and apparent
effects?



Impacts of extreme weather on GPS

Rainfall load (negligible unless extreme:
4 inches equivalent to 10 millibar, or 5
mm vertical displacement) PWV




GPS for surface hydrology

* Possible to use direct surface multipath signal
to infer local vegetation growth and decay,
soil moisture and snow depth.

e http://xenon.colorado.edu/portal/




Challenges and Opportunities in GPS Vertical Measurements

“One-sided” geometry increases vertical uncertainties relative to horizontal and
makes the vertical more sensitive to session length

For geophysical measurements the atmospheric delay and signal scattering are
unwanted sources of noise

For meteorological applications, the atmospheric delay due to water vapor is an
important signal; the hydrostatic delay and signal scattering are sources of noise

Loading of the crust by the oceans, atmosphere, and water can be either signal or
noise

Local hydrological uplift or subsidence can be either signal or noise

Changes in instrumentation are to be avoided
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Instrumental effects



Effect of the Neutral Atmosphere on GPS Measurements

Slant delay = (Zenith Hydrostatic Delay) * (“Dry” Mapping Function) +
(Zenith Wet Delay) * (Wet Mapping Function)

e Torecover the water vapor (ZWD) for meteorological studies, you must have a
very accurate measure of the hydrostatic delay (ZHD) from a barometer at the site.

e For height studies, a less accurate model for the ZHD is acceptable, but still
important because the wet and dry mapping functions are different (see next slides)

e The mapping functions used can also be important for low elevation angles

e For both a priori ZHD and mapping functions, you have a choice in GAMIT of using
values computed at 6-hr intervals from numerical weather models (VMF1 grids) or
an analytical fit to 20-years of VMF1 values, GPT and GMF (defaults)
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Modeling Antenna Phase-center Variations (PCVs)

e Ground antennas

— Relative calibrations by comparison with a ‘standard’ antenna (NGS, used by
the IGS prior to November 2006)

— Absolute calibrations with mechanical arm (GEO++) or anechoic chamber
— May depend on elevation angle only or elevation and azimuth

— Current models are radome-dependent

— Errors for some antennas can be several cm in height estimates

* Satellite antennas (absolute)
— Estimated from global observations (T U Munich)
— Differences with evolution of SV constellation mimic scale change

Recommendation for GAMIT: Use latest IGS absolute ANTEX file (absolute) with
AZ/EL for ground antennas and ELEV (nadir angle) for SV antennas

(MIT file augmented with NGS values for antennas missing from IGS)



Multipath and Water Vapor Can be Seen in the Phase Residuals
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Postfit Resaduals (mm)

Postfit Residuak (mm)
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Effect of error in a priori ZHD
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Station heights using the two
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Relation between a priori
pressure differences and
height differences. Elevation-
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Short-period Variations in Surface Pressure not Modeled by GPT
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Differences in GPS estimates of ZTD
at Algonquin, Ny Alessund, Wettzell
and Westford computed using static or
observed surface pressure to derive
the a priori. Height differences will be
about twice as large. (Elevation-

dependent weighting used).



Simple geometry for incidence

of a direct and reflected signal

LC Multipath Contribution (mm)
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Sensing Atmospheric Delay the

The signal from each GPS satellite is delayed by an amount dependent on the
pressure and humidity and its elevation above the horizon. We invert the
measurements to estimate the average delay at the zenith (green bar).

( Figure courtesy of COSMIC Program )



Zenith delay from wet and dry
components of the atmosphere
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Water vapor as a proxy for pressure in
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Correlation (75%) between

GPS-measured precipitable

water and drop in surface

pressure for stations within
200 km of landfall.

GPS stations (blue) and locations of
hurricane landfalls

J.Braun, UCAR



Annual Component of Vertical Loading

Atmosphere (purple)
2-5 mm

Snow/water (blue)
2-10 mm

Nontidal ocean (red)
2-3 mm

From Dong et al. J. Geophys. Res., 107, 2075, 2002
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Atmospheric pressure loading at mid-latitudes
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Spatial and temporal
autocorrelation of

atmospheric pressure

loading

a SDaa 1D
Distance in km

Time in days

From Petrov and Boy, J. Geophys. Res., 109, B03405, 2004
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